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Matter as Spectrum of Spacetime Representations
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Bound and scattering state SeHiriger functions of nonrelativistic quantum mechanics

as representation matrix elements of space and time are embedded into residual repre-
sentations of spacetime as generalizations of Feynman propagators. The representation
invariants arise as singularities of rational representation functions in the complex en-
ergy and complex momentum plane. The homogeneous §ia()?,/U(2) with rank

2, the orientation manifold of the unitary hypercharge-isospin group, is taken as model
of nonlinear spacetime. Its representations are characterized by two continuous invari-
ants whose ratio will be related to gauge field coupling constants as residues of the
related representation functions. Invariants of product representations define unitary
Poincag group representations with masses for free particles in tangent Minkowski
spacetime.
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1. INTRODUCTION

In Wigner’s classification (Wigner, 1939) of the unitary irreducible Poiacar”
group representations the particles are characterized by two invariants—a mass
m? for translations and a spin (polariziatiod)for rotations. Therewith, linear
spacetime and free particles originate from one operational concept, from a group
and its representations. Why the free particles have the observed masses, spins,
and chargeg for the additional internal operations, that is not explained by clas-
sifying the representations of linear spacetime. The actual spectrum of matter
(m?, 2J,2) e R x N x Z has to be understood by additional structures, e.g., by
representation invariants of nonlinear spacetime. A related attempt is given in this
paper.

The representation classes of the additive gridp(translations) are its
characters—energies for time translatidhsand momenta for position transla-

. . . ~d
tions R3. The translation characters constitute the dual grBup(dual space)
and give rise to convolution algebras of energy and momentum distributions and
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functions. A homogeneous spacetime manifold with tangent Minkowski transla-
tionsx € R* is representable by residues (Saller, 2001a) of Fourier transformed

energy—momentum R* distributions. The representation characterizing invari-
ants arise as poles in the complex energy and complex momentum plane. Prod-
uct representations come with convoluted energy—momentum distributions and
functions.

In Feynman propagators (Saller, 1997a) as tempered distributions, the Dirac
energymomentum distributions on the mass skéh-qo)s(q> — m?) describe
free particles, acted upon by unitary representations of the Peigratip, e.g.,
gaotsinldl g2 §2 — m?, The principal value dlstr|but|on— describes also

mteractlons e.g., Yukawa mteractlonsel’r‘lote iy a5 + Q2 = m2 In Feynman
integrals as convolutions of energy—momentum distributions the on-shell parts
with the matrix elements of unitary spacetime translation representations give
product representation matrix elements, i.e., products of free states. The causally
supported parts with the off-shell contributions, i.e., the Yukawa interactions
with nonunitary position representations, are not convolutable. This is
the origin of the “divergence” problem in quantum field theories with
interactions.

Representations of spacetime embed time and position representations. The
compacttime representationsinduce (Folland, 1995; Mackey, 1968; Wigner, 1939)
compact representations of spacetime translations, related to free particles. The
noncompact position representatiélas seen in Hilbert space valued Swmttinger
functions, e.g.e”™" = [ < &g %e iG% induce Lorentz compatible represen-
tations of the spacetime translation future cone that is taken as model of nonlinear
spacetime (Saller, 1997b, 1999, 2001b). The position representations are embedded
into causally supported contributions. Those parts do not describe free particles,
they are used for wave functions of particles as their “inner structure.” The invari-
ant mass for the representation of the position degree of freedom comes in a higher
order pole, e. 9- e m2)2 The representation invariant cannot be interpreted as a
mass for a free partlcle

After the discussion of time representations (harmonic oscillator), position
representations (Sabalinger wave functions), and spacetime translation represen-
tations (Feynman propagators), all in the language of residual representations with
rational complex functions, representations of nonlinear spacetime are given and
an attempt is made to derive particles as product representations of spacetime.

In the following, | have included, for better readability, many familiar explicit
calculation. The special functions are used as given in the book of Vilenkin and
Klimyk (1991).

2Some people find it surprising that unitary representatéfise S’(R) are no elements of a Hilbert
space with its unitary product in contrast to nounitary representatiofi€ e L2(R) C S'(R).
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2. RESIDUAL REPRESENTATIONS OF SYMMETRIC SPACES

Representation matrix elements of a real finite dimensional symmetric space
G/H with a Lie subgrougH < G are complex functions thereon

0:(G/H)epr— C, x 1 g(x)
ke G:gk(X) =09(kex)

The symmetric space is assumed to haearzonical parametrizatioby an orbit
in a real vector space V

XeGexg=G/H, GexoCV =R

e.g., a group by its Lie algebr@ = expL like SU(2) = {°%|X € R} or the
symmetric spac&0y(1, 3)/SO(3) = {x € R*|x? = % # 0} by the vectors of a
timelike orbit (hyperboloid).

With the dual groupg € VT = k" the representation classes feyH are
characterizable by G-invariant$y, ..., I}, rational for a compact and rational
or continuous for a noncompact Cartan subgroup. The invariants are givggn by
polynomials and can be built by linear invariagts= m for an abelian group and
by quadratic invariantg? = +m? for selfdual groups. All energy and momentum
invariants will be written in mass units.

Using an appropriate generalized functipon the dual groupy ™ = R the
irreducibleU(1)-representations ‘4X) of the tangent space Fourier transfajito
a matrix elemeng of the symmetric space representation

(G/H)epr— €, X > g(x) = f dq(q)e™

The functiongj come as quotient of two polynomials where the invariant zeros of
the denominator polynomidt(q) characterize an irreducible representation via a
Cartan subgroup representation

q%ﬂ, nweR@IR, linear
<~ Q) (@)
9(q) = P | @ me R, compact
G, MeR, noncompact

g is called aresidual representatiofSaller, 2001a) o6/ H, the complex rational
functionq — §(q) a residual representation function. Many examples are given
below.

Residual representations for the tangent spac&ldg = logG/logH of a
symmetric spac&/H will be formulated below.

A representation of a symmetric spaég¢H contains representations of sub-
spacesK, e.g., of subgroupS0O(2) ¢ SO(3) or SOy(1, 1) C SOy(1, 3)/SO(3).
A residual G/H-representation with canonical tangent space paramaters
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(X, X1) has aprojectionto a residuaK -representation by integratiofd?—Sx,
over the complementary spéc'é%G—éH = RY9~5—in both examples above the two-
SO(L,3)/S0B) ~ 2 ~
sphereSULISO) = o2 = SO(3)/50(2)
d-s
X

d ) |
K—C, xx gk, 0)= Wg(x) = /dSQKg(QK: 0)e/ e

The integration picks up the Fourier components for trivial tangent space forms
(momenta)y; = 0 of 'OI%% More explicit examples are given below.

The method of residual representations tries to translate the relevant repre-
sentation structures—invariants, Lie algebras, product representations etc.—into
the language of rational complex functiois q — % € C with its poles and
its residues.

3. RESIDUAL REPRESENTATIONS OF THE REALS

The simplest case of residual representations is realized by time represen-
tations with energy functions (distributions) and one-dimensional (1D) position
representations with momentum functions (distributions) in the real 1D compact
group U(1) = expiR and noncompact grotiD(1) = expR with their selfdual
doublingsSO(2) andSOy(1, 1), respectively.

3.1. Nondecomposable Representations Bf

The nondecomposable representations (Boerner, 1955; Saller, 1989) of the
noncompact totally ordered groare the product of an irreducible factor and a
nil-factor

R > x> etV e gLc*N), N=0,1,2,...
€™ e GL(C), €M esLcCHh)

N is called thenildimension The irreducible 1D representatiors— €#* with

N = 0 are compact foR — U(1) with realinvariant x or noncompact foR —
D(1) with imaginary invariant. The matrix elements of the nil-factor with nilpotent
matrix A/ involve powers in the Lie parameter up to ordére.g.,

. v )2 iv)3

0100 Lix & GF
0010 : 01 x O

Na= = N;#£0, Nj=0, V= 2
gggé 3 00 1 ix

00 0 1

3log G denotes the Lie algebra of the Lie groGp

4With two symbols for the isomorphic Lie groufis= D(1), both a multiplicative and additive notation
can be used. Therewith, one has different notations for the Lie dbglipand its Lie algebr&® =
logD(1).
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The representation space of a nondecompo$bépresentations can be spanned
by (14 N) principal vectors wherefrom only one can be chosen as an eigenvector.
The irreducible time or spacetime representations in the quantum probability
inducing groupU(1) are used for particles (states) with the eigenvatue R as
energy or mass. Nondecomposable, reducible representations come with indefinite
unitary groups which cannot be used for a probability interpretation. Therefore, the
principal vectors involved—also the one eigenvector—cannot be used to describe
particles in quantum theory (Beccei al,, 1976; Kugo and Ojima, 1978; Saller,
1992a,b).
The product of nondecomposable, reducible representations can contain ir-
reducible ones, e.g.

- 1ix i 1ix -
e|m1x ( ) ® e|m2x < > ~ el (my+my)x
0 1 0 1

The order structure of the reals defines the additive cones (morRids)and
the bicone (bimonoidR, W R, = R, I(2) which is set-isomorphic to the group
R. The bicone representations come with a trivial or faithful representation of
the signe(x) = ﬁ € [(2) = {£1}, the cone representation matrix elements use
Heaviside’s step functioft(+x) = &%(X)

Therewith theR-representation matrix elements are complex linear combi-

nations of theR-functions

N
HExX)xNeHX = (aui) P(EX)E”, N=0,1,..., peR®IR
n

The nilpotent powers arise by derivations with respect to the invariant.

3.2. Rational Complex Representation Functions

An irreducibleU(1) representation of the groip—formulated in this sub-
section in an application for timee R and energy—can be written asesidue
of a rational complex energy functiar, equivalently, with éDirac distribution
supported by the invariant energye R

Rt dm = § 2 e~ [ das@ - me e u)

R0+ 1= 7§ d_qi
2irg—m
This gives the prototype of a residual representation. The intggraicles the
singularity in the mathematically positive direction.
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For the grouD(1) = R, where the dimension coincides with the rank and
where the eigenvaluasare the group invariants, the transition to the residual
form is a trivial transcription to the singularity = m. This will be different for
groups with dimension strictly larger than rank, e.g., for the space rot3io(8),
having dimension 3 and rank 1, with the invariant a sq@gre- m? of the three
possible eigenvalues 5

The Dirac and principal valueP distributionsfrom S'(R) are the real and
imaginary part, respectively, of tlimusal(advanced and retardedlistributions

N
[N|m1m=(%]) oim),,, = MM 2INIMe -y gy
~y P TA+N) Iy gy T F(1+N)}
2in(q:Fio—m)1+N_2[5N(m D+ @GP —mE

In the Fourier transformations i8'(R) the real-imaginary decomposition goes
with the order function decompositiah(+t) = 1+T€(t) leading to representation
matrix elements of futur®,, and pasiR ., of bicone and group

dg T(1+N)
2im (QFio — m)ltN

dg T'(1+ N)
RVURABU—)/GW

dg PL+N) o,

Ry A 3 O(Et)t > £ at — y(£t)(it)Ne™

= e(t)(it)Ne™

— /dqﬁ(N)(m— q)eiqt — (it)Neimt

All those distributions originate from the representation functions in the closed
complex plane (Riemannian sphefg}= C U oo with one pole

C>qr- m €
The positiorg = mand the order N of the singularity is related to the continu-
ousinvariantand thajimensionalitpf time representation. A trivial nildimension
N belongs to assimple poleq— A possibly nontrivialtN-dependenceN > 1

is expressed by thmultlpoles( — o - 1hepole normalizatiorfor the represen-
tation is given by the residue at the invariant

Res a_1-n a_1-n _
Z —m)l+n Z 2Irr q_mim — &1
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The complex functions foa_, = 1 are appropriately normalized for the repre-
sentation of the neutral group element. The Fourier transforms with combinations
of different contour directions around the pole representi\i#t) ande(t) the
causal structure of the reals.

The producte of nondecomposable time representation matrix elements
comes with the convolutior of the energy distributions reflecting the order and
the real-imaginary structure

. 9M) 9(=t) 1 —ie(t)

510 9t 0 o) —iv()
9 (1) 9(=t)  o(=t) iv(-t) =

1 1 —ie(t)
—ie(t) -1
* [Nilmi]v  [Nalma]v  [Nilmq]s  [Nilm]e
[N2lmz]v  [N4Imy]y 0 [NyImy]y —i[Ny[my]y
[N2|m2] A [NgImeJa [NgImyJa Pi[NgImy]a with N+ =NetNe
my =mM+my
[N2/m.]s [NtImi]s  [NiImi]p
[N2Im,]Jp —[N4+Imy]s

All these distributions span a unital algebra with conjugation with the Dirac distri-
butions a unital subalgebra. The causal distributions for the representations of the
conesR, . constitute nonunital subalgebras that annihilate each other. The princi-
pal value distributions are a vector subspace with the convolutive action of the Dirac
distribution subalgebra the Dirac distributions for the grdupepresentations a
unital convolution algebra.

3.3. Compact Invariants

Poles at a squared representation invarignt m? (compact invariant) can
be combined from linear poles at= +|m| the invariants for the dual irreducible
subrepresentations involved, formulated in this subsection for time and energy.

In addition to thecausakadvanced and retard@eénergy distributionfm?], .
there are thegnti-) Feynman energy-distributiorig?] .. (different normalization
factor )

_meim?e 1 Im| —ii< 1 B 1 >
- 2 T T 2im(qFio)2—m?2 T diz \gFio—|m qgFio+|m|

[mz]v,A

1 1 1 1
(Mls = [y £ifmdlp =+t M 1 ( . S )
iTg2Fio—m 2ir \qFio—|m q=xio+|m|
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The principal value distribution as imaginary part is combined with the (anti-)
symmetric Dirac distributions as real part

[Mm?] = |mle(q)8(q? — m?)
[m?]s = |m|8(g? — m2)

L (]
th i[mip= —
} with i[m?]p T =

There arise the Dirac distributions with positive and negative energy support

( . )8(q2 — 1) = 8,(q — ) £ 6, (¢ — D)
€(Q)

With 8,.(c — mP) = 9(£a)s(q? — ) = %s(q:m )

The Fourier transforms together with those of

1 q 1 q

~ 7 - A A :I:___i, etc-
2i7 (QFio)2 —m? iTg2Fio—m?

are representations of the cones and the groupM@hx SO(2) matrix elements

dq (";') at i sinjm|t
CasualR,, . > 9 (xt)t i/ ﬂme - Mﬂ)( cosmt )

Im|
%L)elqt =< 1 > iimt|
iTg2Fio—m?2 +e(t)

[m| ..
. d i sinjm|t
BiconeR, W R, >t > /_q (q) | |>
cosmt

iqt _
i g3 — m2e| N dt)(

GroupR >t — /dQ(|m|>e(q)8(q2 — m?)edt = (i Sin|m|t>

FeynmanR, ¥R, >t > i/

cosmt

GroupR >t — /dq<|m|>5(q2 m?)edt — < cosmt )

i sinjm|t

By derivation with respect to the invariant there arise distributions with nontrivial
nildimensionsm.

The convolution properties can be read off the time function multiplication.
The Feynman energy-distributions combine real-imaginary and order properties
of timet and energies? as follows
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[m3], AN with my = |my| £ m,

The Feynman distributionsrf?].. for the bicone representations form unital
subalgebras. In contrast to the advanced and retarded distributidhs,[ they
do not annihilate each other.

3.4. Noncompact Invariants

The functions with imaginary poles from a negative squared representation

invariantg? = —m? (noncompact invariant)
1 |m|
21 ~
-ml== - —
=
give, by their Fourier transforms, bicone representations with noncongayt
matrix elements, valued in the convolution algébka(R) and the Hilbert space

L?(R)—formulated in this subsection for 1D positiare R and momenturg e R

M| o~ ¥(=2) }(2) a—iqZ _ o
f 71 92+ P+ € laz % 2in [q—i|m|] - q;—i\m\e 192 = e7Im2
R, x1(2)> z— f = q2| e 9z — ¢(z)e"Im2

dg 2mdi —
| P " = Imize ™

The representation relevant residues are taken atimaginary “mongesata?i |m|
in the complex momentum plane.
The momentum functions constitute a real unital convolution algebra

[—mi] [ —m3] = [-m3]

The residues of the complex representation functions for compact (real) and non-
compact (imaginary) invariant € {£|m|, i|m|} are
Res 2 1 Res 29
: == ho——s=1
JZ Q- —u
Higher order pole residues are obtaineddyderivations.

5The convolution algebra(G) of a Lie group coincides, for a finite group, with the group algebra
Ce.
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The residual normalization for the unit element of the group, possible for
compact and noncompactinvariant, is different from a Hilbert space normalization,
2

possible for a noncompact invariant only, e/g;, dze ™ = ot

4. RESIDUAL REPRESENTATIONS OF THREE-DIMENSIONAL
POSITION (FREE PARTICLES AND BOUND WAVES)

Position representations with compact invariaiits= m? (real momenta)
are used for wave functions of quantum mechanical free scattering states (free
particles) whereas those with noncompact invarigits: —m? (imaginary “mo-
menta”) arise in quantum mechanical bound waves.

The representations of 1D position with compact and noncompact invari-
ants can be embeddeihto rotationSO(3) compatible representations of three-
dimensional (3D) position with the radial position = |X| =r € R, and the
compact 2-spher®? that extends the sigi{2) for the two hemispheres

R=R, x[(2)>3z<— X>R*=R, x Q?
z X
]I(2)96(Z)=E<—> FGQZ, r#0
In the Pauli representation for position translations by traceless hermitian complex
2 x 2 matrices

o X Xp — X
X = 3. 1 2 =Xaaa€R3
X1+ 1X2 —X3

the polar decomposition looks as follows withe SU(2) for the 2-spher&? =
SU(2)/SO(2)

. (X r o e

X=U F o 0 —r ou F
X cos? —e¢siné 1 r+Xs —Xi+ ix2>
ul=)=1{,,.2 2 ) = —— ; e SU(2
<r> (e’“’sm% cos§ ) /2r(r+x3)<—x1+|x2 r+ X3 (2)
The Fourier transformations in 3D position are related to those in one dimension
by a radial derivative that produces the Kepler fa(%tor

d3q ~ =D iq;‘( d ~ 2 iqr 2 )_{ d = d2
_— » = ——F » = - = 2 —_—
/ 4. 1@9e drzqu“(q e, = =2

The integral over the hemisphere directed momentum modulsse(qz)|G| goes
over all realsffcoo. Therewith a function of 1D positioR > z+— f(|z|) gives a
function of 3D positionR® > X —% f(r), in the following called 2-sphere
spread.

6The embedding symbel is not meant to imply a unique embedding.
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The scalar 3D position representations, nontrivialnfog 0, use the Fourier
transforms withJ(1) andD(1) matrix elements. For simple poles there arise spher-
ical waves for real momentum pol&g = +|m| and Yukawa potentials for imag-
inary “momentum” poles$q| = =i |m|

3 3 .
/d_q;e iax _ es /d_q Fm| ei0X _ gilmir
272 G2 Fio—m? r n? (G2 Fio —m?)?
/ a1 ig_e™ / g m i _ me
2n? @ + ) @ @y

which are the 2-sphere spreads of the representations of 1D pdRition
e 2d
= ——e M, € {Fi(jm| £io), |m
= ar 1 € {Fi (Im| £ io), |m[}
Position derivations produce momentum polynomials in the numerator for non-
trivial 2-sphere representations

o o P
d°a 10 igx _ & _X1dwr

212 G2 4 p2 T o2 ’
d®g g S I
e et =0 —=°¢
72 (G + u?) u r

e.g., the Yukawa force for a noncompact invarignt |mj.

Nontrivial 2-sphere properties are represented with spherical harmonics
(B = (Y (. 0)Ls=—L,...,L}, eg, Y¥(p,0)= ()’ =2Z = 115 To
avoid ther = 0 ambiguity they have to be multiplied with appropriate radial pow-
ers leading to the harmonic polynomials

L(l+L)YL ( 9)
=0

The harmonic polynomials have trivial translation properties.
The scalar contributions in position representations come with Bessel func-
tions of half-integer order—the hyperbolic Macdonald functikngor noncom-
pact invariants and the spherical Hankﬁl Neumanm, and Besse], functions
for compact invariants. They have angular momentwimdependent large dis-

tance behaviork( (R), hi(R)) FHOO(e - eiR) and L-dependent small distance

) 92YL (¢, 0) =
(L, =r-Y (v, 0), { I
(X,

behavior
19 \"enr e R (2L —n)! (2R)"
k. (R) = (-R)" —— =
LR =R <R3R> R L 2t & n!
=(j:i)1+LhﬂE(iiR)=i 1+Ror Rz0 1

R+ L
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. eR  1xirR .
hE(R) =nu(R) £ijL(R) = = ——e" .
nL(R) = cosR cosR + RsinR R0 1
R2 R+ L
. sinR  sinR+ RcosR s
LR = ===, L SR

To obtain residual representations, which are defined fer0, i.e., without
ambiguity or even singularity, the momentum degree of the nume
and the degree of the nominator polynomi@'f have to leave a nonnegative
nildimensionN for spinJ = & representations.

Therewith one obtains for the positi@¥-representation matrix elements the
Dirac momentum distributions with compact invariant for spiand nildimension
N

J=0,1%n1,.
@) sM(m? - g2 for 2
N=01,2,...

The Fourier transformed Dirac momentum distributions starting from the simple
compact representations

- sin|m|r

”H/—W—m) - — = Imljo(ImIr)
-1 2y—igx _ X sinjmjr —m|r cosmr
35% > / iGs(G% — m?)e = >
| |3—' Jl(|m|r)
Imir

describe free states (free particles). They involve spherical Bessel functions mul-
tiplied with appropriate radial powers to yield a reguiar> 0 behavior

> n
\/7]L(R) Jeam i (‘i)
© RO R ZTr(E+L+n)n

n=

In the dipoleswith compact invariants

dg |m|*4g i X\ i
- - __ . e (1, - = Fi|m|X
/n @Fio-—m)° (2 r>e

the Dirac distribution derivatives give the representations of the compact group
SU(2) = exp(R)® with the group functions valued in the Hilbert space
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L?(SU(2)) cLY(SU(2)) as subspaéeof the convolution algebra

3.3 d’q Ny Y N T,
R 9XHf—(|m|+q)8(m —g9)e'
T

X i
= cosmr — i r—5|n|m|r =e'IMX ¢ SUY(2)

The representation matrix elements from the principal value pole for a com-
pact and noncompact invariant require a sufficiently high order pole

-
GE%%m-fm J=0,1,...

’ @ L3 and N=0,1,...
W for J =355

p

They start withdipolesfor the scalars, as to be expected from the additional
G2-power in the Lebesque measutdy = d22G°d|q|, and withtripoles for the
vectors

. d® m .
R35 X > / —g%eﬂqx (sin|m|r, e=M")
77 (G F m?)

/ @Leﬁiai — z(_ cosmr, e*|m|r)
™% (3 ¥ m2)2 '

3 s 2
R35 X / d—quge‘ia;‘ Im|X(sin|mjr, e~I™")
™7 (GE F m?)

The dipole for the vector is ambiguous foe= 0. Representation matrix elements
for nontrivial nildimension arise by derivativeg%ﬁ)” producing higher order
poles and additional radial powar¥.

For noncompact invariant the Fourier transforms are valued in the position
Hilbert spacel.?(R3) and in the convolution algebral(R3). The scalar dipoles
and the vector tripoles, etc., are position representations by &iciger functions

A~ —imr _ dg_ |m| —igx _
11,0) e —fﬂ@qﬁﬁ ;o Im=1

1y ~ ge-Imr — d%a_8mid . -igx 1
12,1) ~ 2|m|Xe = ,,z(q2+m2)3e yoIml=3

They arise as knotless waviés E) of the nonrelativistic hydrogen atom (Messiah,
1965) with angular momentuma = (L, L3) and principal quantum numb&—
the inverse of the quantized “imaginary” momentigh= =i |m| as invariant for

7 For compact spaces one Ha&(T) < L9(T) for p > q.
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the position representation
Ik, L) ~ 2Im[R)- LY., 2Im|r)e!mr
4° m? 1
> > Im K +L+
The degree of the Laguerre polynomials

N d " pN
Ly (p) = <P_Aep$/>ke_p) N

_Z L+ NY (=p)" R>ir#-1,-2,...

A+n nt ' | N=degL!
is the radial quantum number (knot number). Nontrivial knots, i.e., nildimensions
N = 1, 2,...are obtained by operating with the Laguerre polynomiflis™™" =

N
(i) e Imr e g., for one knot

E =

dim|
5 imir d®q 4Imi(a? m) §% _1
12,0) (2—2/m|r)e"Imr = fﬂzm -lax, Im| =3
3.3) ~ 2mix(a - 2mine ™ = [ £ LA ek ym) = 4
q+m)
The convolutions can be read off from the matrix elements, e.g.
1 Imy 1 Im[g 1 |myg
T N

7 @+mi? 7 (G+m)° 7 (G+me)S
The residues of the scalar complex representation functions with the complexified
radial degree of freedom, e.g.

RXQZQCXQZBq—m

CIREET
have to take into account the 2-sphere degrees of freedom
4 d3 4 d G
MGC:RMGS-. K n=¢ 'qa a n fﬁ qﬂiqn
@-p?"  Ju272 (2 - p?) Am (G2 - pn?)
. 2pL2, n=1
- 1, n=2

The additional normalization facté;r is discussed in the next section.

The residual normalization is used for the representation of the unitin a Cartan
subgroup, €.9.50(2) c SO(3) or SOy(1, 1) C SOy(1, 3)SO(3). It is different
from a quadratic form normalization, e.g., with the invariant bilinear Killing form
of the SO(3)-Lie algebra.
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5. RESIDUAL NORMALIZATIONS

For the charactef&” of the translation&¢ with a signatured — s, s) metric
one has the residual normalizations (Gel’ fand and Shilov, 1958) for positive and
negative invariantg? (where thel-functions are defined)

f ddq F(%+1+U) _ 2 f ZF(d+2+v)
() VT (2gio—p2) 5T (i.)SJ_ (q2Fio—u2) 2
- ~d
O(d —s, xR : é%@mimMWMx v=0,1,2,..
uvekR _ r@sy) e , s
- 10— 2)i+v — _ i (1+v)
(Fio—u?) I (1+v)[3( ;TM)ZTf e )]’ V£0,1,2,. ..

with the relevant examples for definite S|gnatures (energy and momenta) and in-
definite ones for Minkowski energy—momeﬂﬁa

if iT q2Fio—u2 zFlo u2 _ 19(11«2) Fi 19(_,“2)
0@)xR>: ifwﬁagﬁf I
O, DXR 4 [%¥a___ 1
! X . f in ] 2
(qg—quno—,ﬁ) 1 . 2
= — xixd(u)
0(1, 3)x R :Ff % Hp

i (qg—ﬁzﬂFiO—uz)

This shows the addional normalization facﬁfnl— if the residues of positioR are
embedded into positioR® = Ry x Q2.

6. RESIDUAL REPRESENTATIONS OF
TWO-DIMENSIONAL SPACETIME

Residual time and position representations can be embedded into Minkowski
spacetime representations. They employ energy—momentum distributions whose
Lorentz invariant singularities determine the embedded representations of both
time and position.

Two-dimensional (2D) Minkowski spacetime in a diagonal(2)-matrix
representation

Xo + X3 0 2
X = = Xoly + Xz03 € R = (Rv (& R/\) (&) (H(Z) X Rv)
0 Xo — X3

is acted upon with the orthochronous Lorentz group (dual dilatations)

SOp(1, 1) : Xg £ X3 > €772 (xg £ X3)
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(without rotation degrees of freedom). It is the noncompact abelian substructure
of the Lorentz groufsQOy(1, 3) of four-dimensional (4D) spacetini.

6.1. Energy—Momentum Distributions

The scalar energy—momentum distributions—(anti-) Feynman and causal
(advanced, retarded)—are distinguished by their enggglyehavior. They are
combinations of the (anti-)symmetric Dirac distribution with the principal value
distribution

1 1 , .11
Feynmant — ————— =46(Q°—m) + ——
iTg2Fio—m? imgp —m?
1 1 1 1 1
Causalt — ———— = = s@-m)+ ————
! 2in (q2 Fi0)2 — m? 2[6(q0) @ ) inq,%—mz}

with (g Fi0)®> = (do Fi0)* — 03
! 8(9> — mP) = 8,(9° — M%) £ 8,(q* — M)
€(o)

Multipoles arise by derivations with respect to the invariaAt
The Fourier transformedi’q = dgdgs Dirac distribution for energy—
momenta

2y 2
/qua(qZ _ mZ)eiqx — _7TN() ( [m4X >

= 9(xA)7No < m:x2> + 9(=x?)2Ko ( _mix2>

comes with the order 0 Neumann function for real argument (timelike) which is

the Macdonald function for imaginary argument (spacelike)

=, (-5)
4

R3¢ nNo(E) =)

= (nh)?

o €2 . .
g T +2y0 — 2¢p(n) | = —2Ko(—i§)

1 1
¢(0) =0, go(n)=1+§+---+ﬁ, n=1,2,...

vo = —T"(1) = limy_ [@(n) — logn] = 0.5772...

The advanced and retarded Fourier transforms are causally supported

2
[ S e = ) [ dacaosia? - me

7 gz —m
22
:inﬁ(xz)é’o<m4x >
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They involve Bessel functions of integer order

e (§)- 505 5D
n=0

g
L
4 (%) L 4+ n)in!

L
a £2
< 3%) 4
2

L=01,...& (EZ) = Jold). [+ D (5_2)

4
2 2 2
e (§) e (9

The Feynman propagators proper—for particles—have first order poles—
they come with the Hankel functiortg] = Ny FiJo

d%q 1 iax o [ MPX
e (o

2y 2
+z9(—x2)2/co( —m4x )

Fourier transformed Lorentz vectors

1 q 1 q

P a— —————, €elC.
2imr (gFio)2—m?2 iTg2Fio—m?

are obtained by spacetime derivati®or= ZX&, e.g.

2
/ 99 go— cx) [ Faacasie? - mree

ir g3 —m?
22 2 2v,2
— 709 (x)& <m4x ) - ng [5 (%) — ()M, <m4x )]

6.2. Time and Position Frames

The partial Fourier transformations with respect to energy and momentum
display the spacetime embedded time and position representations

g(M, x) = f g dg(m, g) / das e g(qp, X0)

= / dap €99 (g2 — m?) (s, Xs) + ¥ (M? — 68)g"*(i 93, Xs)]
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Time: R 3 Xo — g(do, Xo)
9(gs, X3)

Position:R > x .
s { g"“(igz, Xa)

Time and Position Representations R#-Spacetime

Time (compact) Position (compact) Position (noncompact)
g(m?, q) 9(do, Xo) g%(03, x3) g"%(igs, Xs)

Go=/Mm?+03 G=,0-m ig3=Ql=,/m—q]
Lorentz scalars
8(m2 _ q2) COS(%OXO C°5%3X3 0
€(c)3(m? — o?) i St €(00) =g 0

s s . olQxgl
%?ln@ €(xo)i =g s S
Lorentz vectors
2 42 i singoXo % COSg3X3
as(m” - a7) ( X coquX0> ( i singsxa 0
2 2 €0SgoXo g—g COSO3X3
ECONCE I (Ptyechnso IRCOI (b 0
1 q COSGoXo B %i singa|xa| i % 0l
iz qf—m? <(xo) < %i singoXo €(X3) COSO3X3 €(X3) €
The higher order poles arise by derivation
d 0 Im| o Im| o Im| 9

oM " qo 0o G3 0g3  Q 9IQ]

The Dirac distributions involve time and position representations with com-
pact invariant, the principal value part, in addition, also position representations
with noncompact invariarg2 = —(m? — g2)

1 1 1

— =9 q2 — m2 - -

—qp +m? @ )qé—(qc%—mz) a3 + (m? — of)
Theprojection to time representationdll be defined by the partial Fourier trans-
formation | dxsg(m?, x) leading to trivial momenturgs = 0 (rest system), defin-
ing atime frame The projection to position representatioty the partial Fourier

transformation/ dx,g(m?, x) leads to trivial energgy = 0 and defines position
frame

+ & (m” - qg)

ami. = [ et 0 = [ das(aant, e

. d N i
g(iml.2) = [ S20(m,x) = [ dapaa(n?, e
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Time frames have real energies for free particles—position frames have “imagi-
nary” momenta for bound waves.

Time and Position Projection f@®2 =~ R & R

Time frame & =t) Position frame Xz = 2)

g(m?, ) g(Iml, t) g"(ilml, 2)
(%, g3) = (Iml, 0) (@, g3) = (0,i|ml)
Lorentz scalars

2 2 cosmt
5(m —q ) Im| 0
e(@)s(m? — ¢?) i s 0
. gj . a—IMmZz
%qgimz ()i %mt 'e\m\
Lorentz vectors
> 2 i sinjmjt

Qs — o) ("5 0
Ge(@)3 (P — o) (5™ 0

1 g €(t) cosmt 0
i - 0 e(z)e"Im2
1 q _ts;n\mt\ 0

1 |m

E VP ImZz
7 (a3 -m2) 0 ~2%mr

In the projections there remain the compact time and the noncompact position
representations. The Dirac energy—momentum distributions embed only time pro-
jections whereas thprincipal value distributions embed both time and position
projections. The time representations have nildimensirs 0, 1,. .. for poles,
dipoles etc. The position projections arise from spacetime distributions with causal
supportx? > 0.

The complex representation functions for 2D spacetime, e.g.

T sq- ﬁ eT

have energy and momentum projected residues with real and imaginary
invariants—for Lorentz scalars

2 d’q 2 dg 2 1
Elﬁ'qz -m2 im ﬂ(s(qg)qz -m2 ?im 2irg2—m?2 im

Resz_ygdZ() quz_l
Hmg2—m2  Jim 27 %o “m2 dim 27 g2 +m2 - im|

For Lorentz vectors] = qol, + gzos with tr g = 2qg there is a trace residue for




1992 Saller

the energy projection

q dg 2q
R = —_ —_ =1
tril En?qz m2 trfé:“m 2w (Q?,) m2 £|m| 2w q2 — m2

Starting from the projections, the compact position representations are in-
duced (Folland, 1995) by the compact time representations with the eigenvalues

(qo, g3) on theSOy(1, 1)-mass hyperboloidnd theSOy(1,1)- measure\/:

The spacetime translation representation has the cardinaBtql, 1) asits over-
countably infinite dimension. The related Dirac distributions for unitary spacetime
translation representations embed free scattering waves (free particles)

(Iml, 0) < (Qo, gz) with €Mt < gdoXo-itexs = g2 _ g2 — m?
Rotr €M  R25x— /dzq 8(q% — m?)e9

The noncompact position representation matrix elements are functions from the
position Hilbert space. They induce time representations with the eigenvagj,es (
Q) on the SO(2mass circle The spacetime embedding for the position bound
waves uses the principal value distributions

0,iIml) < (0o, Q) with ™% s goolQsl, q2 +Q?=m?

o

R>zr €M causalx?>0: Rzaxr—>/d2q >
-m

6.3. Singularity Surfaces in Energy—Momenta

For time and 1D position, the representation functions

———¢€C

q2 F m2

are singular at points in the complex plafi€z R?, at{=|m|, 0} for compact and

at{(0, i |m|)} for noncompact representations. For 2-dimensional spacetime, the
singularities of

R— Ceqr

— = =2

are on a real 2-dimensional surface in the real 4-dimensional §fazeR* with
a complex energy and a complex momentum plane

2_ 24+ Q2 =m?

a6 —
(o, T; 03, Q) e R {
Qo' —z3Q =0
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For nontrivial mass the singularity surface can be parametrized with a positive and
negative energy-like hyperboloid and a forward and backward momentum-like
hyperboloid

2 —03 =mZ, (o, ds) = mo(coshy, sinhy)
2_Q2=-m? (I, Q) = ma(sinhy, coshy)

For four spacetime dimensions the momentume-like hyperboloid has one shell only,

€(2) — 7. The singularity surface contains the circles

m?> 0, SOu(1,1):

mZ + m3 = m? = (Mo, Mg) = |M|(cose, Sinw)
SO(2) : { g2+ Q? = m?costy
o3 + 2 = m?sinkty
Therewith, the singularity surface i@ is four times a circle, embedding the
imaginary poles for noncompa¥-representations, sliding along a hyperboloid
which embeds the real poles for compRetepresentations. It can be seen in the

R3-projection to real energies where the energy—momentum hyperbola touches
the energy—imaginary “momentum” circle at the two point$n{|, 0; 0, 0)

R®C > (0, 0;05, Q) {alag — a5 =m? Q =0}
U {algs + Q% = n?, gz = 0}
and in theR3-projection to real momenta where there is the energy—momentum
hyperbola only
C®R > (do, 503, 0) : {qla5 — o5 = m*, T =0}
For trival invariant the circles shrink to points on the hyperbola
m>=0;([,Q)=0 or (9o, 0gs) = 0= trival SO(2)

S ) m? > 0, there is only one Lorentz invariant for the real 2D
hyperbo(ilc spherical singularity surfac&or representations of nonlinear space-
time below two invariants will be introduced—to embed compact representations
€™ and noncompact onef™", each kind with an independent invariant.

7. CONVOLUTIONS FOR SPACETIME

Feynman integrals as used in perturbation theory involve convolutions of
energy—momentum distributions for pointwise products of spacetime distributions.

In general they do not make sense siﬁaﬁﬁd) is no convolution algebra.

For energy—momentum convolutions the points on the hyperbolic-spherical
singularity surfaces involved are added. The addition of compact with compact
and noncompact with noncompact invariants embed products for time and position
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representations. The characteristically new feature is the addition of compact with
noncompact invariants.

7.1. Convolution of Two-Dimensional Energy—Momentum Distributions

The product of Feynman propagators for product representations of spacetime
uses the convolution of energy—momentum distributions w&’@:q g; — g) adds
up the energy—momenta as spacetime translation eigenvalues to the eiggnvalue
of the product representation, e.g., for scalar multipole Feynman propagators

ii r'(1+nyg) *ii r'(1+ny)
i (qZ:Fio—mi)Hn1 i (q2:Fi0—m§)l

1\K k K I'(1+n))
= (:l:;) /dqu"'dZQK3 (; q; — q) 1_[ )1+nj

i=1 (9 Fio—mf

+Nk

The convoluted Feynman distributions have to be all of the same type, either all
advanced)® — io or all retarded)® + io.

The convolution is performed by joining first the invariant determining
quadratic denominator polynomials of the energy—momentum distributions

I'(v1) - T'(w) /1 /1
— = = déq-- - daos 4+ -1
R R A &1 A ek8(21 k—1)
Gt g+ )
(Ragy + -+ + Rigie)
UJER, 1)1'750,—1,—2,...

e.g., for two Feynman distributions

1 (Hra+ny) 1 (Qri+n)

i (q2 - io— m%)lJrnl )l+nz

i (o Fio—m3
1 91

1t d? ( L2 —P® p+dQ st
=.—fd:1,za(zl+cz—1>/.—p e RRRTAC A
I Jo I [P? Fio+ 020152 — mie,

) T (24 N +ny)

]2+n1+nz

For the integration the tens@r® p — g ® q¢142 can be replaced byzf’; —0®

q¢182.
The convolution is thg-dependent residue of the relative energy—momenta

pP=01—0

i/dzp I'(2+n) _i/dzp p’r3+n)  T(1+n)
ir (P2Fio+a)mn iz (pP2Fio+a)th  (Fio+a)ltn
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which leads to
1 F(l—l— nl) 1 F(1~|— n2)
iJT(qZ:Fio—mf)lJrnl 7 (g2 Fio —m3)

1 ld ML= )T (14 ny +ny)

1+ny

iz Jo " [(@2Fio)(1—¢) —mic —m3(1l—¢)

Here and in the following the convolutions exist only for pole orders where the
involvedI'-functions are defined. Elsewhere, there arise “divergencies.”

]1+n1+nz

7.2. Compact and Noncompact Convolution Contributions

The convolution of two Feynman distributions fedimensional positioifR®

ﬂ:/ d1+3q 1 eiqx — /dl+sq[li6(qoxo)]8(q2_m2)eiqx
iT g2Fio—m?

gives as real part the difference of the squares of Dirac and principal value contri-

butions (withe(Xp)? = 1) whereas the imaginary part contains the mixed terms
812 = 515 62 — Pt x P2

(' £iPY * (82 £iP?) = M2 £iP™?
PY2 = PLy P2 4 P! 52

The product of the order functions in the product of two Feynman propagators

[1 £ €(qoX0)][1 £ €(PoX0)] = [1 + €(qoPo)] + [€(qo) + €(Po)]€(Xo)
= 2[9(do)?*(Po) + ¥ (—0o)? (— Po)] = [€(0o) + €(Po)]€(Xo)
allows the disentanglement of the convolution
r _r .
iTg2Fio—m: " img2Fio—m}
= [#(+00)8 (4% — m3) % ¥(+00)3 (9° — m})
+9(=00)8 (47 — mi) % 9 (+o)3 (9% — m3)]

i%[a(qz—mf)* 1 ! *a(qz_mg)]

+
2 2 2
@-m ' qf-m

The convolution with the singularities for nontrivial positioR® on
s-dimensional hyperboloids does not lead s-dimensional hyperbobgafs—
m3), but tothresholdsfor energy—-momentg? = (q; + g2)> > m?

9 (£00)8 (9% — mZ) x ¥ (£00)8(9° — M3) ~ #(£0o)?(q° — m?)
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Here, the energy is enough to produce two free real particles with magses
and momentumd; + G2)2 > 0

qz
?(£00)? (0% — m?) = ¥(£0p) /O §p%8(ad — p? — m?)

The convolution of two step functions at masses, gives a step function for
the sum mass, = |my| + |my|. The set with alls + 1D forward (backwards)
hyperboloidg{q > |m|}|m € R} is an additive cone

{q>=Imf}+{q > Ima|} = {q > Imy[}
9 (£00)? (92 — m2) * ¥ (£0o)? (4% — m3) ~ ¥ (£0o)?(q? — m?)

The convolution of compact translation representation matrix elements from the
real part of the propagator (free particles) gives corresponding matrix elements
for product representations (product of free particles). The positive and negative
energy—momentum distributions are convolution algebras, not annihilating each
other

§ =108y +08, 8'x8%= (8L +8L) (52 +57)
P~ie(Xo)@d —8,), P #P?>=—(8L — &%)« (82 — 82)

s

892 = 615 62 — PT % P2 = 2(81 % 62 + 6T + 62) ~/ 28112

with 8., € D'(R}")

For time and energy, also the principal value part adds up the invariant poles
only for time : P2 = §1 % P? + P1 % §% ~ 2i€(t) (8% x 6 — 8} % §2) ~ 2P'*2

The characteristic effect of a convolution of noncompact with compact invariant
comes in the principal value part fer= 1, 3 position degrees of freedom
8(0 — m?) ~ 9(g? — m?)
qgflmz ~ 9(Q* —m?) 4+ 9(-q*+m?)
U U

compact (free4- noncompact
eimt e—|m21
The two energy—momentum dependent zeros of the denominator polynomial
—P(5) = ¢’¢ (1= ¢) —mit —my(1 - ¢) = —a’[¢ — ca(a)][¢ — ¢2(0?)]

2-m+m_£./A(0? with {mi:|m1|i|m2|

2 _ 9
£1,2(0%) = 202 A(0?) = (g% — m2)(q? — m?)
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are either both real or complex conjugate to each other according to the sign of
the discriminantA(g?). Furthermore, real zeros—in the casexqfj?) > O—are

in the integratiorn; -interval [0, 1] only for energy—momenta over the threshold
(0% — mi). Therewith, the convolution of scalar propagators for 2-dimensional
spacetime reads

,. 1 1 1 1 1t 1
Re: &+ — > = *£— > P =+— d{ > - — I P e
IT g2 Fio—mg IT g2 Fio—m; im Jo @*Fi0)(A—-¢)—mizg —m5(1—¢)

1 1 1
_ 2 _ m2s _m2 _ il
_/od{[‘s(q £ —g) —mat —my(l §)>iinq%c(lf;)fmitfmi(lfg}

_ 2 L i
~ JA@)I [ﬁ(qz ) F DOCAQY) arctan S o

Z(qz) A(q

F9(-A@) log
T

]

The spacetime original convolution of compact with nhoncompact invariants is
proportional ta(—g? — m?) and comes in the logarithm

with > (@2 - m2) + (¢ — mi)

A(=A@QY) = —9(q* — m3) + #(9° — m?)
A(A(G?) = 9(9° — m?) + ?(m? — )

|-y

_m2

m2 — m2

’Z(qz) —2/A(@P)

In the correspondingly computed convolution of energy distributions the in-
tegral compensates the? -pole from the discriminant

R-4 LMl R ]
iTg2Fio—mZ " irqg2Fio—m3
_ i 1d§ [mym;| 3
Tl [~ (@2 Fi0)(1—¢) +mie —mp(l— )]
1 Im.|
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1 4 *V/PE)

with T =
P(): (P—-mi)(g2—m?) d¢?

In the convolution of two advanced or two retarded distributions the pole
integration description has to be changgdr io — (q F i0)? everywhere

1+s .
i/ OI2inq (q:Fi0§2— m2 e fd”sqé(q )LEG(XO) 3(9% — m?)e

— 9(dx0) / d+3qe(G)3(q? — m2)e™

which antisymmetrizes the resulting step function above for the threshold

1 1 1 1
2im (qQFio)2—m? ~2im(qFio)2—m3
1 1 1

— | s :
27 Jo éb(cwlo)zf(l—c)—m%c—m%(l—c)

[ (@)9(9* — i):F.i{“'}}
2\/|A( i

7.3. Residual Product of Representation Functions

The convolutions of causal and Feynman energy—momentum distributions
can be summarized with the notatieffior the different integration contours

+2 g?Fio), Feynman
SOu(1, 1)>2R2:(§,q2):{( i 4 F10) Y

(£5=, (@ Fi0)?), causal
with the results
r(1+n11)+ _ R r(1+n21)+ _ fo M- ;)"21"(1+n1+nz)+n .
1 2 1+N2
(q2-m2) (a2-m3) [2;(1 0)-mec—mi(1-o)]
ar@+ny) R r(4ng) = [1dg @O0 ety
By (@m)™ " (e-mp) ™0 [ -0 -ma-q)|
aring) B _ar@in) g ~(31+980 327 ) A-02r (1)
1+n: I+np — JO ni+n
(c-mp) " (eomg) [@eca-o-mic-mia-o] "

The convolution product contains the normalization factor for the relative energy—
momentum residue integrgﬁ; ¢. Therewith, it defines theesidual productead-
ing from complex representation functions to functions for product representations.
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The corresponding residual product for time representations reads

(+,0) = (£ A F i0)

r@+n) R r@4n) _ C4n+np)
(q-mp)* T (q-mp)t2 T [q—(mu+mp)]ttatn2

R:

The meromorphic functions, i.e., only pole singularities, on the closed complex
plane is the field of rational functions. The time representation functiR(i®
(pole functions) have negative degree

P'(@) _ a+aq+---+anq"
P™@) bo+big+ -4 bng™
bn#0, n—-m<-1

G@, aj,bj e C,

C>qmr

They have a residual product with u%itadding up the invariant singularities.

The g?-singularities for product representations disappear for the residual
product of the spacetime representation pole functions. A massless representation
function & has compact invariants only, i.e., a hyperbolic singularity surface. Its
residual product

. 1r 1 1
timeR : —x% = —
qqg—-—m g-—m
. gRr q 1 9 /1 1
Pk = — | =1, — S
spacelim® qz*(qz—mz)2 (2 2+q®qaq2) 0 dngi—mz

m2—q?

! 1 log "
[o d§q2§ -m> g

gives logarithms as integrated representation functions

2+io , 2
Iog(l— d -~ ) = 9(q% — m?) [im—i-log <% —1)]

+9(—g% + m?) log (1 - q_2>
m2

The logarithm of a quotient is typical for a finite integration (Behnke and Sommer,
1962), e.g., for a function holomorphic on the integration curve

/abdz f(2) = ZRes[f(z) log :%ﬂ , /Ooo dzf(z) = — ) Reslf (z)logZ]

with thesum of all residue the closed complex plane, cut along the integration
curve. For 2-dimensional spacetifiié <— C? the formulation with the sum of the
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residues looks as follows

M2 (%
_/oldgq%l i)

—m2 q2

2 1 1 2
M2<1) =—) Res| ——lo Sl (1_q_>
Z)= ). ,;__ > —5 100 9(1- 5

qZ

8. RESIDUAL REPRESENTATIONS OF FOUR-DIMENSIONAL
SPACETIME

Four-dimensional Minkowski spacetime and its Lorentz group has—with
3D position translation&>—additional rotation degrees of freedom from the 2-
sphere?. Spacetime is used in the Cartan representation with hermitian complex
(2 x 2)-matrices where the trace is the time projection

RO[R, x I2)]=ZR? > R*Z R & [R, x Q7
Xo + X3 0 N Xo+ X3 X1 —iXp
0 Xo — X3 X1+ iXy Xg— X3

X\ (Xo+r O L (X
(B0 ) ()
SOy(1, 1) = SOy(1, 3)= SOy(1, 1) x 2 x SO(2) x 2

It requires rotation representations that will lead, in comparison to 2-dimensional
spacetime, to a change in the pole orders for residual representations.

8.1. Feynman Distributions
In the Feynman and causal energy—momentum distributions

re+n) 1 1 T@+n)

Feynman = ZsWHMm2 )y — — = 7
y :F 7-[2 (q2 :F |0 m2)2+n T ( q ) i7T2 (qé _ m2)2+n

for n=-1,0,1,...
'2+n)
2 ((q :F |0)2 m2)2+n

1
CausaI:F = () 8(1+n)(m2 _ q2)

1 r'2+n)
2i7T2 (qg _ m2)2+n
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with (g Fi0)® = (do Fi0)* — 4

there is an additional residual normalization faciéoilC for the 2-sphere.
The Fourier transformatiord®q = dopd927d|q| in 4D spacetime are ob-
tainable from the 2D case by an invariant derivation (2-sphere spread)

/d4q (6(Qo)19(qz))’N‘(qz)equ B /dqo OB(E(q )zS‘(1 q3)>

/1 (qO _ qa)el%XO*l(]sf

e 1 ~ igx
= 52 | 79 (i) HO et

One obtains as Fourier transformation of the Dirac distribution

d*q . , njax 9 [ m2x2

and the causally supported Fourier transforms

4 4
/d_ququ — G(XO)/ d27Z_q€(qO)8(l+n)(m2 _ qz)eiqx

im2 (qg _ m2)2+n
=in <$>1+n %ﬁ(xz)eo <m:X2)
_ { i [8 (X{) — 9 (x®)mPey (#)] , n=-1

im0 (=5) en (), n=0,1,...

The Kepler (Yukawa) facto[,1 singularity is embedded into the lightcone Dirac

dlstrlbuuon—z?(xz) = §(x?) for the simple polen = —1.
Feynman propagators of scalar particle fields come with simple poles.

8.2. Time and Position Frames

By partial Fourier transformation with respect to energy and momentum one
obtains the embedded time and position representations

d*q oy d’a g
rg(me, ) = [ £ 3 gt ) = / S et (a0, 0

/ dap @99 (o — m?)g(l, %) + 9 (m? — q2)g"( [d, )]
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Time and Position Representations R--Spacetime
Time Position (compact) Position (noncompact)
§(m? a) 9(do. Xo) 9°(/d1, %) g"(ilal. %)
Go = y/m? +§? ldl=,/af —m?  ildl=Ql=/m?—q5
Lorentz scalars
8(m2 _ qz) co.sqcloxt) zsmr\cﬂr- 0
€(@)s(m? — ¢?) i e 2¢(qo) " 0
2 =
€(Go)s' (M? — 0?) 2 i]1(00%0) €(90) <" 0
L q,g_;mz €(xo)i 20 o2j COSAI o2j E-IQK
1 1 _; sinjgir _ielQrr
i (qg—mZ)z €(Xo)2 ij1(doxo) i i =g
Lorentz vectors
| sindoxo % lo((dir)
as(m? — ¢?) g g2 & 0
a C0SdoXo Fiia(air)
COSQoXo _ { B io(dIr)
qe(do)s(m? — g?) ( ] ) €(q0)26° ( o 0
g1 SindoXo £ij1(gIr)
2 [ jo(doXo) cos|glr
ge(@)(m? —q?) -3 ( - ) 0) ( ““ 0
36 1j1(do%0) Xj sin|g|r
COSOoXo 2 ino(Ialr) —i $iko(IQIN)
e o) a1 ol
' g &l sindoxo —¥n1(idIr) ka(1QIr)
9o i %
R Pa: —e(xo)x‘% Jo(doxe) o— ‘q‘l siniair o— I‘?‘ elar
" (q3-m2) Lija(coxo) 7 cos|g|r 7
with—for higher order poles
ad m| a ._|m| o Im| d Im| 9
aim| dm? Qo 9do 14l alal  1Qla|Ql

There arise the scalar and vector Bessel functigns 0, 1 (spherical waves for
free particles), Neumann functiong, and Macdonald functiorlg (for Yukawa
interactions and forces).= 0-singular and = 0-ambiguous eIemenéwhich
are no position representations come with simple and double poles and are marked
with e ando resp.

With the embeddin®? — R*the time representatiofis < R remain sim-
ple poles, the position representatiBrr— R* come as scalar dipoles and vec-
torial tripoles as seen in the projections for trivial mometta 0 (time frame)
and trivial energy go =0 (position frame with “imaginary” momenta),
respectively.
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Time and Position Projection f@®* = R ¢ R3

Time frame Ko = t) Position frame
. - g3 . .
g(m?, q) g(mi, 1) = [ Fam® %) g"(Im], %) = [ Geg(m?, x)
(90, @) = (Iml, 0) (. Ial) = (0,i|mi)
Lorentz scalars
a(mz _ q2) _CC\’_r?th 0
€(qo)s(m? — g?) j stmt 0
st ()i Snmt e
1 1 + sin|m|t—|m|t cosmt et Imir
" (@) W o
Lorentz vectors
2 2 i sin|mt
Q3 — o) ("% 0
cosmt

Ge(@)3(? — o) (™) 0

0
1 g cosmt
T Z-m? e(t) ( 0 ) . (2;( LHmir g |mi )

r
_ tsin|mjt Or
R ew( 2" o ( : ) e
(a3-m?) 0 -r
t sin|mt|—|mt| cosmt 0

1 q 4m|3 e Imir
E3 (qs_m2)3 G(t) ( 0 ) <)'{) 2|m|

The time representations from the Dirac and principal value distributions have
nildimensionsN = 0, 1, 2 for poles, dipoles, tripoles. The= 0 regular nonam-
biguous position representation matrix elements are the knotless Kepler bound
state wave functions above, embedded into the principal value energy—momentum
distributions for spacetime representations with timelike suppost 0

- d4 m )
11,0) ~ e”m" "—)v/—27| L _aw
7 (ap —m?)
d‘g 4m’q
72,5 23
7 (gp - m?)
The complex representation functions for 4-dimensional spacetime, e.g.

@ZXQZBQI—)ﬁE@ZXQZ

12,1) ~ 2m|xe M < / gax

give as energy and momentum projected residues for the Lorentz scalar functions

1 dq .. 1 dg 1 1
R —_— = = - = :t
£ \?n\SqZ —m? im ZinZﬂ(S@q2 —m? i,nﬂ 2imr g2 — m? 2|m|
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1 d“q 1 dg 1 i|m|
Res— = = — —_ -
i \?n\SqZ —m? iim 2i7125(qO)q2 —m? ﬁim 2in2 g2 + m? + 2

and for the Lorentz vectar = gol, + G a trace residue t = 2qo for the energy
projection

g dg _29° 2
trRes——— = ————=m
+im[g2 — m? im 2ir g2 —m?

8.3. Residual Products (Feynman Integrals)

Pointwise products of Feynman propagators convolute energy—momentum
distributions which, in general however, are not convolutable. For particle propaga-
tors, there arise undefined local products (“divergencies”) of generalized functions
from the imaginary principal value for the causally supported part

L1 ~ims(x®) +---

i Gg—m?

[—X—12+in8(x2)+~-~] . [—X—12+ims(x2) +]

P P

|+ [ -my+ ]

1
=) i o —

i7 gf — mj

The convolution of two Feynman distributions

1 Qre+m) 1 (re+n)
:Fiﬂ,'z (q2 F io — m§)2+n1 * :F|7T2 (q2 F io — m%)2+n2

1 1
=— / d¢1,28(1+ &2 — 1)
0

i

1 a1 Leny . 14
@<q¢2—P®p+q®qmz>§l & T(A+n+ny)

f i2 [P? Fi0 + 020122 — M2z — miz,]

4+n1+n;

involvesthetensop ® p — q ® q¢182 = %214 — ( ® q¢122 for the vector—vector
convolution. Taking thg-dependent residue of the relative energy—momenta

inZ(pPFio+aptn 12

in2 (p2Fio+a)*"  (Fio+ a)ltn

/d“p r@3+n) 1/‘d4p pF(4+n)  T(1+n)
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and with the notation for the different contours

> Fi,02Fio), Feynman
(F3=2 (@*Fi0)?), casual

the residual scalar—scalar, vector—scalar, and vector—vector product reads

r'(2+ny) 5 r@e+ny) __ fl d¢ cHN1(1—2) 20 (2401 +np)
B 2+ny R B 2+n; — 0 R 5 5 2+n1+np
(c2-m2) (c2-m3) [a2c1-0)-mzr—mB(1-0)]
ey ¥ reing o plge 6Ot e,
B 2+nq 5 2+n; N 5 5 2+n1+np
(quml) (qumg) [q z(lfz)fmlcfmz(lfc)]
ar@iny R _qrein) [hde —(3Lramagy e A-OH e @ nstny)
B 2+nq 5 5 2tng — Jo R 5 5
(a2-m2) (a2-m3) [a2c (1-0)-méc—mga—0)
Theg?-poles in the residual products for the energy and momentum rational
complex functions disappear in the residual product of the energy—momentum pole
functions

R*:

1+ng+np

qrR 2q B 1 a1 [t 1-¢
¥*(q2—m2)3‘_<51“+q®qa—q2)¥/od‘}_g_j

q R 29 <1 0 ) 1 /1 ¢
(q2)2 * (g2 — m?)3 2™ aed 392/ (92)? Jo ¢ (; _ m_2)2
qZ

with the residue sum in the closed complex plane (there is a nontrivial residue at
the holomorphic point = ), e.g.

’ R s 1-¢, t-1
M2(1)=—/d ~=—Y Res—— Log——
q2 0 g-é,_r(?_z Z é._m_ 9 s

q2
m2 q2
-1 (15 o (- )

9. LORENTZ COMPATIBLE SPIN EMBEDDING

The embedding of position representations into Minkowski spacetime has to
embed the harmonic momentum polynomia@¥{ = |G|>’Y?' (¢, #) and has to
interpret this embedding with respect to time representations involved.

The connection between sp80(3) and its coveringsU(2) to the Lorentz
groupSQOy(1, 3) with its coveringSL(C?) is given by transmutators as represen-
tatives of the symmetric spa@L (C?)/SU(2) = SOy(1, 3)/SO(3), i.e., of the
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orientation manifold of the spin group. All those transmutators (boost representa-
tions) are products of the two (2 2) transmutators from Pauli spinovs= C? to
left and right handed Weyl spindf, = C? = Vg

S(g):v’_)VLy é(g)VH Vg, §= s
parametrizable with normalized positive energy—momenta

d,+ 9; 9, —id
2> O, i: = l —i—_': —0 __3 -1 __2
P07 %A g, g, 0, - g,
G=9,.+3 o*=1=¢
Both Weyl transmutators embed the ufjt for the Pauli spinor space and the
spherical harmonic¥'(p, 8) = ‘g—‘ into the normalized energy—momenta
s@)1zs*(@) =g, 3(@)187@) =4, s(a),5(a) = s(d) € SL(C?)
q 263 * ( a ) qo ( q >
=5s(Q)=u|—=)oez??ou*| =), tanPB=—=, u|—= | e SU_Z2
@ <q|> a =@ Y\ <
_ 1 <1+ﬂ0+93 gl_igz )

/2(1+q,) 9, +ia, 1+4d,-4,

Now the general case: &1J(2)-representation [2] with spin J = 0, % .
is embedded into finite dimensional irreducible representation®2[2] with left
and right “spin”L, R of the Lorentz grouBL(C?) for

L+R=>1J

[2J] — [2L|2R] for .
L + R+ Jinteger

with the SU(2)-decomposition

LRI & [23], c+oeeR ~ S5 e
J=|L—R|

=L J=|L—R]

2L 2R
The Lorentz group acts upon the totally symmetrized prodyt¥s ® \/Vg =

C+2L)A+2R) of Weyl spaces. The transmutators

2L 2R 2L 2R 2L R
2LPRIg) = \/s@) @ \ /3@ : \/V© \/V - \/VL® \/ V&

allow the Lorentz compatible embedding of spin properties.
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For example, the Minkowski representation of the boosts
st@) 1 VOV - VL ®Vr
g

T+4,

q
3[1\1](9) — 3(9) ® g(g) = A(g) — (qo . 4 ) € SOy(1, 3)
! 3

gives the Lorentz compatible embeddings with the projectors for spin 0 and 1

2@ (515) 4@ —awa= g
2@ (§l2) 4@ - u-awa=sl - 4

This example is characteristic: the totally symmetric spherical harmonics are
embedded for integer spin in symmet86y(1, 3)-representations

VLQVREC=CeoC3

j=0,1,...:[23] = [2L|2L] with 2L > J

a 2J 2L
<ﬁ) = ()35 \/q®\/q

with the decomposition of the unit matrix into projectors
J=0,1,...: Lgjoy = eB (@250 @35 =P (@LapsTEHH(g)

(@)25 © @25 = 835(A)35

In generalization of the two Weyl representations there arise two embedding
types for half-integer spin, conjugated to each other. They can be Clebsch—Gordan
composed from the two Weyl transmutators

1+2L12L
3211 g ! Dot oLz g2
2’3 [2L|1+ 2L] 2
1+2L 23 2Lv
( § >23 @z = Vae V4

— s

@ TR
()1+4L= Vg ® Vi

An appropriate D(1)-dilatation factor gives transmutators frotd(2)
to GL (C?), i.e., representatives of the symmetric sp@&teC?/U(2)

9> > 0:s(q) = fS(q)—U( ) fez‘“ou(

G |> € GL(C?
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Therewith the harmonic polynomials are Lorentz compatibly embedded

= 2J
(;—') S @5 @ < @ = VR*@

with the examples from above for Lorentz scalar, left and right Weyl spinor and
Lorentz vector (with the projectotls, = 1; + 13)

@1 = q = s(q)12s*(q)
@)1 =& = 8(0)128*(q)

Convolutions of energy—momenta are understood to involve also the tensor
products of the spin representations. For example, in the vector—vector convolution
above there arises the projectors for spin 0 and 1

@° = @o=1 @' = {

0
092

0

.1 N
Q*q=>§14+Q®q 9

= %(9)%+ B +9° }(g)%

10. RESIDUAL REPRESENTATIONS OF FUTURE CONES

Causal (advanced and retarded) and Feynman multipole energy—momentum
distributions lead—via their Fourier transforms with appropriate integration
contours—to representation matrix elements of different symmetric spaces—of
the causal bicone (future and past cone) and of the tangent spacetime translations,
respectively. Feynman distributions witfg? — m?) from a simple pole represent
spacetime translations as inhomogeneous subgroup of irreducible unitary Boincar’
group representations, acting on free particles. The representations of the future
cone as model of nonlinear spacetime (Saller, 1999, 2001b) involves higher order
energy—-momentum poles. They are no particle propagators. They will be used
to determine the masses and normalization of particles for the construction of
Feynman propagators.

10.1. Spacetime Future Cones

One dimensional time future is embedded into the future cones of 2D and 4D
Minkowski spacetime

0 3
Ry 5t, = 9(0)t — 9(x%)9(x?) (X ng 0 0 X3> = x, € R?

x4+ x3 xt —ix?
x4+ix2 x0—x3

< ﬂ(xo)ﬁ(x2)< ) =x, e R}
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with associated orthochronous groups—trivial, abelian, simple

{1} = SO(1) = SOy(1, 1) SOu(1, 3)
Time future is the causal group(1) = expR

R, >t, =’ eD(1)
R, = D(1) = GL(C)/U(1)
The 2-dimensional future cone is the direct product of causal group and selfdual

Lorentz dilatation group

2 _ 290
0 43 x2 =¢
R2sx, = (X O = /7% with ’
Vv vV = 0 XO X3 - x0+x3 62‘/’3
X—x3

R? = D(1) x SOy(1, 1)

The 4-dimensional future cone is a homogeneous space with 2-dimensional future
R2 as abelian Cartan substructure

0 3 1 iy 2 S o\ *
X X® X —1IX -
v ) ey (f) o @+l (f)
r r

R4 S Xy =
Y Vv .
Xl—i-IX2 XS —X3

0 xO4r 7
pO X _ Q27
x9—r

=X u(®)esuQ)

2
X =
with v

Sl|64

R = D(1) x SOu(1, 3)/SO(3)
>~ D(1) x SOp(1, 1) x £2 = GL(C?)/U(2)

The cones as irreducible orbits Bi{1) x SO (1,8), s=0, 1, 3 are used
as strict futures, open without “skin,” i.e., without the strict presexiee0 and

without lightlike translations for nontrivial positios= 1, 3
X, eRIFS=x2>0
1D and 4D future are the first two entries of the symmetric space chain
GL(CM/U(n), n=1, 2,..., which are the manifolds of the unitary groups in
the general linear group, canonically parametrized in the polar decompasition
u o |g| with the reah?-dimensional ordered absolute valxes= |g| = /g o g €
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RQZ of the general linear group. They are the positive cone of the ordéted
algebras with the complax x n matrices.

In residual representations the future cdR&'s = G/H is canonically
parametrized by translations which constitute the tangent spadg/bgof the
future cone

logD(1), s=0
R¥*S = { logD(1) & logSOu(1, 1), s=1
logGL (C?)/U(2), s=3

The cone is embedded into its tangent space. The futureRbie GL (C?)/U(2)

as the orientation manifold of unitary groups is taken as model for nonlinear
spacetime. Th&L (C?)-action by left multiplication involves the external Lorentz
group. The groupJ(2) of the equivalence classes is used for internal degrees of
freedom (hyperisospin). The related structures (Saller, 1998, 2001b) will not be
considered in more detail in the following.

10.2. Residual Representations of Time Future

The residual representations of time future by the advanced energy distribu-
tions are characterized by one compact invariant and nildimemsion

1 rA+N) 1w i r(1+N)
2in(q—io—m)1+N_2[8N(m o)+ 7 @QP— m)l+N]

They are representation matrix elements of the causal gb¢Lp

F(1+ N) dat — (it )Ngmt
Rvatv’_)/zln(q m)1+N = (ity) ™

10.3. Residual Representations of 2-D Future

The residual representations of 2D future will be constructed from the ad-
vanced energy—momentum distributions

1 1 1 1 1
A (q—io)f—m |:€ (Go)8(g — m?) + Eq—]

With the Fourier transforms and their partial projections one obtains for the rep-
resentations of time future and position

g(?, x) = / d2qeg(n?, ) = / das e g(qo, x°)

= f dop €%%° [9 (62 — m?)g°(gs, x°) + 0 (M? — ¢?)g"(iqa, x°)]
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Representations of Spacetime FutR®e= R, ® R

Spacetime future Time frame Position frame
(xv = 2(x0)D (x?)x) g =t) G=2
a(m?, q) g(m?, x) g(iml, tv) e D(1)  g"*(ilml, 2) € SOy(1,1)
(90, Q3) = (Im}, 0) (@, as) = (0,i|m])
1 1 m2x2 ) _sinimity e—|mZ
27 (q—i0)2—m? 4 A [m] [m|
2L (a- 10?2 (m4xv ) cosmt, e(z)e*'mz‘
1 xe (m2x§> __tvsinmjty _geimd Im2
27 ((q— uo)z m?)2 20\ 72 “2m 2l

9 2y2 2 2 2 )
st ) =0 () e (M) i 502) = 26006
T

a 9 m?x2 m?x?2 9 d
— €& Y ) =-¢ Y, = — =2XV—
om? 52 0 ( 4 ) 0 ( 4 ) T axv Ix2

Witht, = 9(t)t = ”Te(t)t the time future projections, i.e., the representation
matrix elements of the causal grol)§1), are combined from Dirac and princi-
pal value contribution. The position space projections, i.e., representation matrix
elements of the orthochronous gro8@y(1, 1), come from the principal value
only.

Spacetime future representation matrix elements have to be functions, i.e.,
the Dirac distributiors(x2) on the forward lightcone in the Lorentz vector gives
no representations, marked byThe future lightlike translaﬂonézlﬂxO are no
elements of strict futur&2 > 0.

Two-dimensional future is theank 2 real Lie groupD(1) x SOgy(1,1). The
residual representations of these two noncompact groups will be characterized
by two invariants for the characters, both from a continuous spectrum. There-
fore, the dipole in the residual representation will be supportetiioyLorentz
invariants for the hyperbolic-spherical singularity surface with the pole
function

1 1 m3 — m3 _ dmz

@?-m3 2-m  (@2-md)(@®-mj) Jm = (@%- m2)2

By the Lorentz compatible embedding with tang&ittranslations and energy—
momenta both invariants contribute to representations of the time @ri)@and
the position spacB0y(1, 1).
On the lightconex? = 0, where time and position translations coincide=
+x0, the contributions from both invariants cancel each other as seen for the vector
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representation

igx

/ 27 (q— |o)2 m2)2

XV m2x2v m2x2

with the projectiorx,, = t, 1, + zo3 on time future and position

Spacetime futuré®? > x,

igt
/ 2i7 (- uo)2 e

= cosmotv — cosmaty

m3 ‘
PositionR > z — e '¥?
~ /mg / 2im (g2 + m2)2

e*|moz\ _ e*\mﬂ\

2
The energy projected trace residues of the representation functions are

Time futureR, > t, —

= € (2

r R;?S m2 — m3 L w2 =ms
(@® - m§) (> —mi) | -1, p?=m3

10.4. Residual Representations of 4D Future

Two-dimensional future is a Cartan subgroup of 4D future with additional
2-sphere degrees of freeddkf} /R? = Q2

The residual representations of 4D future by advanced energy—momentum
distributions have as projections to time future and position

0 gaxg & i
ro(m ) = [ < evgt,q) = [ e Fo x7)

= / dop €%%° [9 (02 — m?)g°(Idil, X) + v (m? — 62)g"(i [§l, X)]

2
P m2x2 X2 2 m2X2
— | & V) =682 )—m?s m*&,
() &(75) = () s () s
Four-dimensional future is the real homogeneous s&ceC?)/U(2) with

rank 2 for a Cartan subgroup(1) x SOy(1, 1). Therefore, its residual represen-
tation will be supported by two invariants as for the 2-dimensional case with a
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Representations of Spacetime Futife= R, ® R3

Spacetime future Time frame Position frame
(xv = B(x%)B(x?)x) ) =t)
a(m?, q) g(m?, x) g(iml,t) €D(1)  g"“(i|ml, X) € SOp(1,3)50(3)
Vs (9o, G) = (Iml, 0) (@, 161) = (0,i|m)
1 1 d mexg sinjm|ty e—|m|r
™ {g-i0)2—m? *- Eg°< 4 ) T mi T
1 1 & (mzxﬁ) __sinjmity —|mit, cos mt, e—|mjr
7 {(q-10)2—m?)2 0\ ™2 - - am® -
Faome v iea(TE) cosmt, T e
! 4 2 2
1 2 tysinmit x e-Imir
i @@i07=?) .avso( ol T2
i 2q xv5 (m Xg ) __ty(sinm|ty —mjt, cosnt,) _getimr
i7 ((q-i0)2—m?)3 4mp3 2|

characteristic additional dipole structure (Heisenberg, 1967) to take into account
the 2-sphere degrees of freedom in 3D position

1 1 m2 — m32 B (m3 — mg)2

@ @ om (2 -m)® (@2 ng)(? g’

2
/mz AT =)t — ey

Again, both invariants contribute to representations of the time gegipand the
symmetric position spac®L(C?)/SU(2) = SOy(1, 1) x Q2 = R3,

There is one aditional noncompact continuous invariant compared with the
one compact mass invariamf of the Poincag’group for free particles as used in
the Wigner classification

Rank Lorentz Poincar” Expansion
1 SOp(1,1) SOp(1, )X R2  SOp(2, 1)
2 SOp(1,3) SOp(1,3)xR*  SOp(2,3)

With two invariants the vector representations of 4-dimensional future are

ma d4q 2q )
. 4 2 2
Spacetime futuré®?, > x, » dm?(m3 — m )/ 272 ((q 10 = m2)3equ

_xv e mpx*vY\ . (m3x]
X e (TBY) e (7
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m2x2
+ (m§ — m3) m3&; ( ZV)]

with the projectiorx, = t, 1, + X on time future and 3-dimensional position

2
Time futureR, > t, > modmz(m(z, —m?) / g9 4 gat
m2 2w ((q —i0)? —m?)3
t,sinmat
= CcOSMgt, — cosmat, + (M3 — m3) VTSV
3

y ) m d®q G e
PositionR3 5 X > dm?(mj — m?) f 22 (@ 1 PR ax

m3
X [14 |mo|r B N LLL s
= —-|———¢€ - ———— ¢
r r2 r2
e— |mar
2 2
+ (mg — m3) 2

The energy projected trace residues of the representation functions are as for
the Cartan substructure

2
Res (m3 — mj) _ Res[ 29° 29 } L p? =md
s (@ - m)(e - ~Lu? = m

Q?-m5 q*-mj

A simple poleﬁ has a positive energy projected residue, its mass can
be associated to a particle. The related irreducible time translation represen-
tation with positive normalization in an associate inner product space can be
taken over to define a Feynman propagator as Fourier transformatiggasf—
m?) with unitary representationd?* of spacetime translations by a free par-
ticle. DipoIes(qz_“;mz)2 cannot be related to probability valued eigenvectors for
translations, they come from nondecomposable 2-dimensional nondiagonalizable
translation representations with triagonal nilpotent Jordan contributions and with
a ghost metric (Saller, 1999a,b). Product representations with a dipole can in-
volve poles for particles. A dipol%%mz)2 has a nontrivial momentum projected
residue.

11. MATTER AS SPACETIME SPECTRUM
11.1. Residual Representations of Tangent Spaces

Complex pole functions of the translation characters (energy—monerta)
% can be used both for the representations of a symmetric space (spacetime)
and for the representations of its tangent space (spacetime translations).
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On a symmetric space functiorG{H)repr> X — g(x) with canonical
parametrization, e.gxNe™ for D(1) or €MX for SU(2), the tangent space (Lie
algebra) action involves the corresponding derivatives, e.g.

d N 92 3
OIXfor logD(1) = R, 3% 932 forlog SOy(1, 3)/logSO(3) = R
Therewith @angent distributiorof a symmetric space, e.g., a Lie algebra dis-

tribution for a Lie group, will be defined by an inverse derivative with an invariant
pole and a residua,, familiar asGreen distributions of differential equatiofis
general no functions). Its Fourier transform defines a complex tangent represen-
tation function. Tangent distributions come with different integration contours. In
contrast to the normalization of Cartan group representations by the group unit,
the residue of a tangent representation has to be determined by another structure
(below).

The causal group time is isomorphic to its tangent space. Therefore the tangent
representation functions with appropriate residue are also group representation
functions
a1
—-m

timeD(1)=R:
q

For 3D position with the rank 2 Euclidean semidirect group there are two
types of tangent functions—for integer and half integer spin

—1(G)2? _
. -3 2 2 J=01.. %’ e'g"q?—iz
positionSO(3) x R®, = +m-: 13 . @ g 21
— 2121 —(QZ_MZ)%+J, .g.. qZ,MZ

The Fourier transforms involve the Yukawa potential and force.

The tangent functions for time and position have to be embedded into
Minkowski spacetime tangent function: For 2-dimensional spacetime one has with
the rank 1 Poincargroup

a—1 a—1q
q2—-m2’ gq2—m2

Spacetimé&Oy(1, 1) x R? :

For 4-dimensional spacetime with the rank 2 Poiegdup there are two tangent
function types

. _a-1@)35 ;
. J=0,1,. W W|th ZLZ\]
. - . _ +
Spacetim&Oy(1, 3)xR*: { 7 = 18 % with 2L > J — 1
€9, b

For a givend there are different embeddings as discussed above.
There is a decisive difference of tangent distributions of posikdand 2D
and 4D spacetimeR?* compared with those of timeR. In general,
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tangent distribution$ € G’ are no symmetric space functiogss G, i.e., G’ 2
G. They are derivatives thereof with respect to the canonical parameters, e.g.,
e d e

5 = Tdron where the Yukawa potential arise from the tangent representa-

tion functlons{mm =0, 1,...} and the exponential from the symmetric
space representation functio 2+:2)2+N IN =0, 1,...}. Ingeneral, the tangent
representation functions constitute a vector space only. In contrast to the pointwise
multiplicative property of symmetric space functighs G — G and convolution

for their Fourier transformg = G — G the requirement of multiplicative stability

for the tangent distributions does not make sense (“divergencies”). Translations
and their representations can be added, but, in general, they cannot be multiplied.
For example, a squared Yukawa potenﬁéﬂ does not make sense as a rep-
resentation. Or, Lie algebra representation matrix elements have no associative
multiplicative structure. However, a tangent vector space (Lie algebra) should be a
moduleG’ € mod; with respectto the residual action with functlcgn’s)rsymmet—

ric space (group) representations, i G’ — G’ and for the Fourier transforms
GeG — @G

symmetric space symmetric space> symmetric space

symmetric space tangentspace — tangentspace

For example, a Lie grou@ acts adjointlyG x G’ — G’, Ad g(l) = glg~*, upon
its Lie algebraG’ = log G or on its tensor fields.

With the tangent distributions dual to the symmetric space functions the resid-
ual product (convolution) of a tangent space function with a group function arises
in the dual product

G xG—C (g =/I(x)dxg(x)

- f dix f d4qe™ ( + §)(q)
— 20)( + §)0)

With (I, g) = 1 the tangent and symmetric space functions are called dual to each
other.

11.2. Eigenvalue Equations

The tangent action defines eigenfunctions for an invagiaatC by, e.g.

1d 1 92 . 10 -
;&g(x) = g(x), Fﬁg(x) = g(X), ﬁa_ig(x) =g(x)
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The invariant is the solution of theigenvalue equatiofor the massless tangent
functionlo, 8’ = lo = 8, (inverse derivative), e.gle(q) = % g_'ﬁ g—j % with the
unit or the Lorentz compatibly embedded unit on the r.h.s.—with the
examples

TimeR :

PositionR® : £ — 1,
g

2 ~ ~
Spacetim®*s %q =1, m_2 <11+S - q(;g) = <11+S - q(;@;q) =q’=m?

To obtain invariants for a product representation a function for a symmetric
space representation acts by residual product upon the massless tangent function
leading to another tangent function

b:6— G, g lox§
with the invariant arising from the eigenvalue equation
o*x8@=1=q=pn

This amounts to a normalization of thg-dependent residue arising in a
convolution.

For example, the residual action of the tangent func%bof abelian time

D(1) on an irreducible representatica::_ulﬂ givesm+ M as eigenvalue for the
product representation

T:IEEV—>IR: ! I—)TE ! = m
q qg-—M qg g-—M qg-M
=1 =M+m

q—M = +

11.3. Eigenvalues for Position Bound Waves

The Hamiltonian for the nonrelativistic hydrogen atom involves the Kepler
potential that is a tangent distribution arising by Fourier transformation of a mass-
less function representing the position translati@s

ho P 1 1=/d3qiiai

T2 e re ) 2022
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The eigenvalue equation involves the residual product with the wave fungfions
as position representation matrix elements

3\ < qz_i_R~~_ . . R %
Hg(X) = Eg(X) — [7 ﬁz*} §(G) = E§(q) with f= o

The residual product of the massless tangent representation fudgtiith the
position representation functiofswith invariantu € (|m|, =i (Jm| = i0)) gives
tangent representation functions, e.g., for scalar representations

0@ < | o i e Cf

@) e {Zr'j:l @ a1 € C}

i R 21 1
= 5 k% = =z
4> @ +p?? @ +p?
Therewith the eigenvalue problem can be solved by noncompact position repre-
sentation functions (Hilbert space bound waves), e.g., by the irreducible scalar
position representation for the ground stdtgd) ~ e™'

q_z_i_sz 1 B 1 q_z_qz_’_uz
2 02 J( 2 2u

= =E—
@Y @+ P

=

Nontrivial knotsN = 1, 2,. .. lead to the Laguerre polynomials as linear combi-
nations of position representation functions. Analogously, harmonic polynomials
for angular momenta =1, 2,... can be included.

11.4. The Invariant Mass Ratio for Spacetime

In general and in contrast to residual product stable energy and momentum

pole functionsP(C) 579(@) — P(C), the residual products of energy—momentum
g2-pole functions for representations of rank 2 nonlinear spacefifyié with
hyperbolic-spherical singularity surfacgd = m? do not produce rational com-
plex functions withg?-poles which would determine the invariants of product
representations. Thg?-dependent residue of the convolution gives integrals over
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rational functions, e.g.

S acetime'/ld ! = o9 (1_ %22)
P Jo ngé —m? q2

In the following an attempt is made to determine invariant masses and normaliza-
tions of energy—momentum poles for the representations of the time translations
R, Lorentz compatibly embedded into spacetime translatiRii§. Perhaps, one

can characterize this as an attempt to find a Lorentz compatible solution of the
bound state problem in the potenti(r) as given above in the projection of

the vector representation of nonlinear spacetitieto the homogeneous posi-
tion spaceSOy(1, 3)5O(3)= R3. The superposition of Yukawa and exponential
potentials

F(%) = — = Va(r) V(r)—/m%“'mz(m2 ™) [ e
— a)_}( A , 3 = m% 0 mn2(62+m2)3
_emr e mpomg
r 2|m3|

is the 2-sphere spread of a noncompact representation of 1D position with a
proportional contribution from the dipole (nildimensidh= 1)

Va() = =i, Vi) = /TOan(mg_mZ)/ da_ 2 e

dr2 m2 (G2 + m2)?
m3 d \2eIm2

=/ dm(m-md))(-— ) —

/mg (™ m)<dm2> i

e—|mDZ\ m2 _ m2 e—|m3Z|
0 3
=2 — 2= =514 Imgz))
[Mo| ms [mgz|

. R . . .
The residual product; * § of the massless vector function for a spacetime
tangent representation with the spacetime vector representation fufictibar-
acterized by two invariants gives

m2
%:Rﬁ—ﬂl&zzéi/odmz g

(@ -

m3 1
f dn? [ d¢ !
0

m3 q%¢ —m?
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2
q . 4 4. 9 R/m° 2 2 2q
— R SR =% dm?(m2 —m
1 9 m3
—‘(zl“*q@qa—qz)/mg / o

The massless tangent function has a hyperbolic singularity surface. With at
least one nontrivial invariant, the spacetime representation function has a
hyperbolic-spherical singularity surface. Therefore, invariants on the hyperbolic
surface are combined with invariants on hyperbolic and spherical surfaces. There
is no combination of invariants that are both on spherical surfaces.

The mvamantn2 # 0 for the normalized embedded time representaﬁ@#
is used as unit
qa - L

1, —= g, — =M
[Mo| m3

12

mg
The eigenvalue functions are thé-dependent residues

@ ML) |- foldcﬁ for R2
1q g2 f13 dmz(l m?) fo d{ for R4
The residual product will be used to establlsh duality between spacetime
and tangent representation in the normal|zat|§g‘pk(g)(0) = 1;.s. This duality
condltlon requires an eigenvalue at mgés= 0, i.e. ,qz =1, and determines the
ratio 3 of the invariants for rank 2 spacetime

¢m2

__log m2

m3_ -2 . 1 2
> = € 3 for R

logm2+1—m2 m3 _5

1=11(0) = L
m2 1484

for R4

12. RESIDUES OF TANGENT REPRESENTATIONS
12.1. Geometric Transformation and Mittag—Leffler Sum

The exponential from the Lie algebRa(time translations) to the group exp
R = D(1) can be reformulated in the language of residual representations with
energy functions by geometric series
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The transformations involved

1 w 1 q g
I — =W+ ——=——, e(g.,2=—, —
z l1-w z-1 m m
are elements of the broken rational (conformal) bijective transformations of the
closed complex plane
az —
+h eC
yz+ 8

with real coefficients as group isomorphic to

Coz—

A= (;‘/‘ §> € SL(R?) ~ SU(L, 1)~ SO(L, 2)

For det A = 1upper and lower half plane +io remain stable. The eigenvalue
w = z= 1 becomes a pole

apy 10\ . w

With one fixpointw = 0O the transformation is parabolic, i.e., an element of the
R-isomorphic subgroup& 8).
The geometric transformation will be generalized to associate pole functions
to the complex eigenvalue functions for spacetime with g—zz
1(2)
1-1(2)
An eigenvalue, i.e., a zero of the denumeratpe {z|l(z) = 1}—assumed to be

simple with| holomorphic there—defines, by geometric transformation of its
Taylor series, &aurent serie§Behnke and Sommer, 1962) and a residue

zZ— 1(2) —

0 (5 ok
1@ =1+ @2 + Y ET 2 10z
k=2 '

(2 a-12) -« K
-0~ 7=z +§(2—20)ak(20)

a 1(z0) = —m

Each eigenvalu¢z|l (zk) = 1} has its own principal part with thilittag—Leffer
sumreplacing the simple pole for time or position

zZ— (2 —

1(2) . Z a — 1(z)

1-1(2 o I L

The generalization for higher order poles is obvious.
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Therewith one obtains the transition from the eigenvalue fundtjen to
complex representation functions for the Poimcgroup

g To*§
b To#8(aD) = 1+ (6 — M) oTo » G(TP) + -+
— G —> ¢, . [ va(q? 5
1=l g(qZ) = 1|f|oi(€~3q(q)2) = %lel;nnz) + -

- aLlj(LmZ) = diqzro * g(mz)

12.2. Residues as Coupling Constants

For the residual spacetime product abo aF?(g)(qZ) the residual normal-
izationa_;(0) for the massless solutidp(0) = 1 is given by the inverse of the
negative derivative of the eigenvalue function there

2

1-m @1
_ = — = 2° 4
a_1(0)  9g>2 O~ & ~ 124 for R*
3

With the geometric transformation the principal partinthe Laurent series gives
an energy—momentum spacetime translation representation function for mass zero
with residual normalization

T a_1(0
o? q 1()_’_._.

@ —mp " g

(1-m?2q a_1(0)
@—mp "M T

With appropriate integration contour, it can be used as propagator for a mass
zero spacetime vector field with coupling constard_;(0) which—with the
signatures — (d — s) only for 4-dimensional spacetime—has two particle inter-
pretable degrees of freedom with a positive scalar product, related to the 2-sphere
R? /R2 = Q2 with left and right axialSO(2)-rotations (polarization)

(51 2) ~ <(1’ é) for SOp(1, 1)% R?

-n" = 10 001

<o 1) =101, 0| for SOy(1,3)x R*
3 100

All the numerical results depend on the normalizations—trace normaliza-

tion, dual normalization—which require a deeper understanding. If those normal-
izations can be trusted and if appropriate representations of the compact internal

1
:R2 — SOp(1, 1)x R?: / dn?
m3

1—%*

%*

1
"R? — SOp(1, 3)x R*: / dn?
m3

1—%*
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degrees of freedom fdy(2) hypercharge and isospin are included, the residue of
the arising propagator with mass zero in 4-dimensional spacetime may be com-
pared with the coupling constant (Heisenberg, 1967) in the propagator of a massless
gauge field, e.g., for the electromagnetic interaction and the left and right polarized
photons with Sommerfeld’s fine structure constant

0) . 1 1 137

SOy(1, 3)x R*: —plk
Oo(, 3)x T "M 20) T 4a 126
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