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Bound and scattering state Schr¨odinger functions of nonrelativistic quantum mechanics
as representation matrix elements of space and time are embedded into residual repre-
sentations of spacetime as generalizations of Feynman propagators. The representation
invariants arise as singularities of rational representation functions in the complex en-
ergy and complex momentum plane. The homogeneous spaceGL (C)2/U(2) with rank
2, the orientation manifold of the unitary hypercharge-isospin group, is taken as model
of nonlinear spacetime. Its representations are characterized by two continuous invari-
ants whose ratio will be related to gauge field coupling constants as residues of the
related representation functions. Invariants of product representations define unitary
Poincaré group representations with masses for free particles in tangent Minkowski
spacetime.
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1. INTRODUCTION

In Wigner’s classification (Wigner, 1939) of the unitary irreducible Poincar´e
group representations the particles are characterized by two invariants—a mass
m2 for translations and a spin (polariziation)J for rotations. Therewith, linear
spacetime and free particles originate from one operational concept, from a group
and its representations. Why the free particles have the observed masses, spins,
and chargesz for the additional internal operations, that is not explained by clas-
sifying the representations of linear spacetime. The actual spectrum of matter
(m2, 2J, z) ∈ R× N× Z has to be understood by additional structures, e.g., by
representation invariants of nonlinear spacetime. A related attempt is given in this
paper.

The representation classes of the additive groupRd (translations) are its
characters—energies for time translationsR and momenta for position transla-

tions R3. The translation characters constitute the dual groupŘd
(dual space)

and give rise to convolution algebras of energy and momentum distributions and

1 Max-Planck-Institut f¨ur Physik, Werner-Heisenberg-Institut, M¨unchen, Germany; e-mail: saller@
mppmu.mpg.de.

1973

0020-7748/03/0900-1973/0C© 2003 Plenum Publishing Corporation



P1: GXB

International Journal of Theoretical Physics [ijtp] pp984-ijtp-472802 October 22, 2003 9:46 Style file version May 30th, 2002

1974 Saller

functions. A homogeneous spacetime manifold with tangent Minkowski transla-
tions x ∈ R4 is representable by residues (Saller, 2001a) of Fourier transformed

energy–momentumq ∈ Ř4
distributions. The representation characterizing invari-

ants arise as poles in the complex energy and complex momentum plane. Prod-
uct representations come with convoluted energy–momentum distributions and
functions.

In Feynman propagators (Saller, 1997a) as tempered distributions, the Dirac
energymomentum distributions on the mass shellϑ(±q0)δ(q2−m2) describe
free particles, acted upon by unitary representations of the Poincar´e group, e.g.,
eiq0t sin|Eq|r

r , q2
0 − Eq2 = m2. The principal value distribution 1

q2
P−m2 describes also

interactions, e.g., Yukawa interactions ineiq0t e−|Q|r
r , q2

0 + Q2 = m2. In Feynman
integrals as convolutions of energy–momentum distributions the on-shell parts
with the matrix elements of unitary spacetime translation representations give
product representation matrix elements, i.e., products of free states. The causally
supported parts with the off-shell contributions, i.e., the Yukawa interactions
with nonunitary position representations, are not convolutable. This is
the origin of the “divergence” problem in quantum field theories with
interactions.

Representations of spacetime embed time and position representations. The
compact time representations induce (Folland, 1995; Mackey, 1968; Wigner, 1939)
compact representations of spacetime translations, related to free particles. The
noncompact position representations2 as seen in Hilbert space valued Schr¨odinger
functions, e.g.,e−|m|r = ∫ d3q

π2
|m|

(Eq2+m2)2 e−i EqEx, induce Lorentz compatible represen-
tations of the spacetime translation future cone that is taken as model of nonlinear
spacetime (Saller, 1997b, 1999, 2001b). The position representations are embedded
into causally supported contributions. Those parts do not describe free particles,
they are used for wave functions of particles as their “inner structure.” The invari-
ant mass for the representation of the position degree of freedom comes in a higher
order pole, e.g., 1

(q2−m2)2 . The representation invariant cannot be interpreted as a
mass for a free particle.

After the discussion of time representations (harmonic oscillator), position
representations (Schr¨odinger wave functions), and spacetime translation represen-
tations (Feynman propagators), all in the language of residual representations with
rational complex functions, representations of nonlinear spacetime are given and
an attempt is made to derive particles as product representations of spacetime.

In the following, I have included, for better readability, many familiar explicit
calculation. The special functions are used as given in the book of Vilenkin and
Klimyk (1991).

2 Some people find it surprising that unitary representationseimt ∈ S ′(R) are no elements of a Hilbert
space with its unitary product in contrast to nounitary representationse−|mz| ∈ L2(R) ⊂ S ′(R).
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2. RESIDUAL REPRESENTATIONS OF SYMMETRIC SPACES

Representation matrix elements of a real finite dimensional symmetric space
G/H with a Lie subgroupH ⊆ G are complex functions thereon

g : (G/H )repr→ C, x 7→ g(x)

k ∈ G : gk(x) = g(k • x)

The symmetric space is assumed to have acanonical parametrizationby an orbit
in a real vector space V

x ∈ G • x0
∼= G/H, G • x0 ⊆ V ∼= Rd

e.g., a group by its Lie algebraG = expL like SU(2)∼= {ei Eσ Ex|Ex ∈ R3} or the
symmetric spaceSO0(1, 3)/SO(3)∼= {x ∈ R4|x2 = 1

m2 6= 0} by the vectors of a
timelike orbit (hyperboloid).

With the dual groupq ∈ VT ∼= Řd
the representation classes forG/H are

characterizable by G-invariants{I1, . . . , Ir }, rational for a compact and rational
or continuous for a noncompact Cartan subgroup. The invariants are given byq-
polynomials and can be built by linear invariantsq = m for an abelian group and
by quadratic invariantsq2 = ±m2 for selfdual groups. All energy and momentum
invariants will be written in mass units.

Using an appropriate generalized functiong̃ on the dual groupVT ∼= Řd
the

irreducibleU(1)-representationsei 〈q,x〉 of the tangent space Fourier transformg̃ to
a matrix elementg of the symmetric space representation

(G/H )repr→ C, x 7→ g(x) =
∫

ddqg̃(q)eiqx

The functions̃g come as quotient of two polynomials where the invariant zeros of
the denominator polynomialP(q) characterize an irreducible representation via a
Cartan subgroup representation

g̃(q) ∼= Q(q)

P(q)
∼


1

q−µ , µ ∈ R⊕ iR, linear
(q) j

(q2−m2)n , m ∈ R, compact
(q) j

(q2−m2)n , m ∈ R, noncompact

g is called aresidual representation(Saller, 2001a) ofG/H , the complex rational
functionq 7→ g̃(q) a residual representation function. Many examples are given
below.

Residual representations for the tangent space logG/H = logG/ log H of a
symmetric spaceG/H will be formulated below.

A representation of a symmetric spaceG/H contains representations of sub-
spacesK , e.g., of subgroupsSO(2)⊂ SO(3) or SO0(1, 1)⊂ SO0(1, 3)/SO(3).
A residual G/H -representation with canonical tangent space parametersx =
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(xK , x⊥) has aprojectionto a residualK -representation by integration
∫

dd−sx⊥
over the complementary space3 logG/H

log K
∼= Rd−s—in both examples above the two-

sphereSO0(1,3)/SO(3)
SO0(1,1)

∼= Ä2 ∼= SO(3)/SO(2)

K −→ C, xK 7→ g(xK , 0)=
∫

dd−sx⊥
(2π )d−s

g(x) =
∫

dsqK g̃(qK , 0)eiqK xK

The integration picks up the Fourier components for trivial tangent space forms
(momenta)q⊥ = 0 of logG/H

log K . More explicit examples are given below.
The method of residual representations tries to translate the relevant repre-

sentation structures—invariants, Lie algebras, product representations etc.—into
the language of rational complex functionsC 3 q 7→ Q(q)

P(q) ∈ C with its poles and
its residues.

3. RESIDUAL REPRESENTATIONS OF THE REALS

The simplest case of residual representations is realized by time represen-
tations with energy functions (distributions) and one-dimensional (1D) position
representations with momentum functions (distributions) in the real 1D compact
groupU(1)= expiR and noncompact group4 D(1)= expR with their selfdual
doublingsSO(2) andSO0(1, 1), respectively.

3.1. Nondecomposable Representations ofR

The nondecomposable representations (Boerner, 1955; Saller, 1989) of the
noncompact totally ordered groupR are the product of an irreducible factor and a
nil-factor

R 3 x 7→ ei (µ+NN )x ∈ GL (C1+N), N = 0, 1, 2,. . .

eiµx ∈ GL (C), eiNN x ∈ SL(C1+N)

N is called thenildimension. The irreducible 1D representationsx 7→ eiµx with
N = 0 are compact forR→ U(1) with realinvariantµ or noncompact forR→
D(1) with imaginary invariant. The matrix elements of the nil-factor with nilpotent
matrixN involve powers in the Lie parameter up to orderN, e.g.,

N3 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⇒ N 3
3 6= 0, N 4

3 = 0, eiN3x =


1 i x (i x)2

2!
(i x)3

3!

0 1 x (i x)2

2!

0 0 1 i x

0 0 0 1


3 logG denotes the Lie algebra of the Lie groupG.
4 With two symbols for the isomorphic Lie groupsR ∼= D(1), both a multiplicative and additive notation
can be used. Therewith, one has different notations for the Lie groupD(1) and its Lie algebraR =
logD(1).



P1: GXB

International Journal of Theoretical Physics [ijtp] pp984-ijtp-472802 October 22, 2003 9:46 Style file version May 30th, 2002

Matter as Spectrum of Spacetime Representations 1977

The representation space of a nondecomposableR-representations can be spanned
by (1+ N) principal vectors wherefrom only one can be chosen as an eigenvector.

The irreducible time or spacetime representations in the quantum probability
inducing groupU(1) are used for particles (states) with the eigenvaluem ∈ R as
energy or mass. Nondecomposable, reducible representations come with indefinite
unitary groups which cannot be used for a probability interpretation. Therefore, the
principal vectors involved—also the one eigenvector—cannot be used to describe
particles in quantum theory (Becchiet al., 1976; Kugo and Ojima, 1978; Saller,
1992a,b).

The product of nondecomposable, reducible representations can contain ir-
reducible ones, e.g.

eim1x

(
1 i x
0 1

)
⊗ eim2x

(
1 i x
0 1

)
∼= ei (m1+m2)x


1 0 0 0

0 1 i x (i x)2

2
0 0 1 i x
0 0 0 1


The order structure of the reals defines the additive cones (monoids)R∨,∧ and
the bicone (bimonoid)R∨ ] R∧ ∼= R∨I(2) which is set-isomorphic to the group
R. The bicone representations come with a trivial or faithful representation of
the signε(x) = x

|x| ∈ I(2)= {±1}, the cone representation matrix elements use
Heaviside’s step functionϑ(±x) = 1±ε(x)

2
Therewith theR-representation matrix elements are complex linear combi-

nations of theR-functions

ϑ(±x)xNeiµx =
(
∂

∂ iµ

)N

ϑ(±x)eiµx, N = 0, 1,. . . , µ ∈ R⊕ iR

The nilpotent powers arise by derivations with respect to the invariant.

3.2. Rational Complex Representation Functions

An irreducibleU(1) representation of the groupR—formulated in this sub-
section in an application for timet ∈ R and energy—can be written as aresidue
of a rational complex energy functionor, equivalently, with aDirac distribution
supported by the invariant energym ∈ R

R 3 t 7→ eimt =
∮

dq

2iπ

1

q −m
eiqt =

∫
dq δ(q −m)eiqt ∈ U(1)

R 3 0 7→ 1=
∮

dq

2iπ

1

q −m

This gives the prototype of a residual representation. The integral
∮

circles the
singularity in the mathematically positive direction.
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For the groupD(1)∼= R, where the dimension coincides with the rank and
where the eigenvaluesq are the group invariantsm, the transition to the residual
form is a trivial transcription to the singularityq = m. This will be different for
groups with dimension strictly larger than rank, e.g., for the space rotationsSO(3),
having dimension 3 and rank 1, with the invariant a squareEq2 = m2 of the three
possible eigenvaluesEq.

The Dirac and principal valueP distributionsfrom S ′(Ř) are the real and
imaginary part, respectively, of thecausal(advanced and retarded) distributions

[N|m]∨,∧ =
(

d

dm

)N

[0|m]∨,∧ = [N|m]δ ± i [N|m]P

2
, N = 0, 1,. . .

∼= ± 1

2iπ

0(1+ N)

(q ∓ io−m)1+N
= 1

2

[
δ(N)(m− q)± 1

iπ

0(1+ N)

(q P−m)1+N

]
In the Fourier transformations toS ′(R) the real–imaginary decomposition goes
with the order function decompositionϑ(±t) = 1+ε(t)

2 leading to representation
matrix elements of futureR∨ and pastR∧, of bicone and group

R∨,∧ 3 ϑ(±t)t 7→ ±
∫

dq

2iπ

0(1+ N)

(q ∓ io−m)1+N
eiqt = ϑ(±t)(i t )Neimt

R∨ ] R∧ 3 t 7→
∫

dq

iπ

0(1+ N)

(q P−m)1+N
eiqt = ε(t)(i t )Neimt

R 3 t 7→
∮

dq

2iπ

0(1+ N)

(q −m)1+N
eiqt

=
∫

dqδ(N)(m− q)eiqt = (i t )Neimt

All those distributions originate from the representation functions in the closed
complex plane (Riemannian sphere)C = C ∪∞ with one pole

C 3 q 7→ 1

q −m1+n
∈ C

The positionq = mand the order 1+ N of the singularity is related to the continu-
ousinvariantand thedimensionalityof time representation. A trivial nildimension
N belongs to asimple pole 1

q−m . A possibly nontrivialt N-dependence,N ≥ 1
is expressed by themultipoles 1

(q−m)1+N . Thepole normalizationfor the represen-
tation is given by the residue at the invariant

Res
m

N∑
n=0

a−1−n

(q −m)1+n
=

N∑
n=0

∮
dq

2iπ

a−1−n

(q −m)1+n
= a−1
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The complex functions fora−1 = 1 are appropriately normalized for the repre-
sentation of the neutral group element. The Fourier transforms with combinations
of different contour directions around the pole represent viaϑ(±t) andε(t) the
causal structure of the reals.

The product• of nondecomposable time representation matrix elements
comes with the convolution∗ of the energy distributions reflecting the order and
the real–imaginary structure

• ϑ(t) ϑ(−t) 1 −i ε(t)

ϑ(t) ϑ(t) 0 ϑ(t) −iϑ(t)
ϑ(−t) ϑ(−t) ϑ(−t) iϑ(−t)

1 1 −i ε(t)
−i ε(t) -1

⇒

∗ [N1|m1]∨ [N1|m1]∨ [N1|m1]δ [N1|m1]P

[N2|m2]∨ [N+|m+]∨ 0 [N+|m+]∨ −i [N+|m+]∨
[N2|m2]∧ [N+|m+]∧ [N+|m+]∧ i [N+|m+]∧

[N2|m+]δ [N+|m+]δ [N+|m+]P

[N2|m+]P −[N+|m+]δ

with N+ = N1+N2

m+ =m1+m2

All these distributions span a unital algebra with conjugation with the Dirac distri-
butions a unital subalgebra. The causal distributions for the representations of the
conesR∨,∧ constitute nonunital subalgebras that annihilate each other. The princi-
pal value distributions are a vector subspace with the convolutive action of the Dirac
distribution subalgebra the Dirac distributions for the groupR-representations a
unital convolution algebra.

3.3. Compact Invariants

Poles at a squared representation invariantq2 = m2 (compact invariant) can
be combined from linear poles atq = ±|m| the invariants for the dual irreducible
subrepresentations involved, formulated in this subsection for time and energy.

In addition to thecausal(advanced and retarded) energy distributions[m2]∨,∧
there are the (anti-) Feynman energy-distributions[m2]± (different normalization
factor 1

2)

[m2]∨,∧ = [m2]ε ± i [m2]P

2
∼= ± 1

2iπ

|m|
(q ∓ io)2 −m2

= ± 1

4iπ

(
1

q ∓ io− |m| −
1

q ∓ io+ |m|
)

[m2]± = [m2]δ ± i [m2]P ∼= ± 1

iπ

|m|
q2 ∓ io−m2

= ± 1

2iπ

(
1

q ∓ io− |m| −
1

q ± io+ |m|
)
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The principal value distribution as imaginary part is combined with the (anti-)
symmetric Dirac distributions as real part

[m2]ε ∼= |m|ε(q)δ(q2−m2)

[m2]δ ∼= |m|δ(q2−m2)

}
with i [m2]P

∼= 1

iπ

|m|
q2

P−m2

There arise the Dirac distributions with positive and negative energy support

(
1

ε(q)

)
δ(q2−m2) = δ∨(q2−m2)± δ∧(q2−m2)

with δ∨,∧(q2−m2) = ϑ(±q)δ(q2−m2) = 1

2|m|δ(q ∓ |m|)

The Fourier transforms together with those of

± 1

2iπ

q

(q ∓ io)2−m2
, ± 1

iπ

q

q2∓ io−m2
, etc.

are representations of the cones and the group withI(2)× SO(2) matrix elements

Casual:R∨,∧ 3 ϑ(±t)t 7→ ±
∫

dq

2iπ

(|m|
q

)
(q ∓ io)2−m2

eiqt = ϑ(±t)

(
i sin|m|t
cosmt

)

Feynman:R∨ ] R∧ 3 t 7→ ±
∫

dq

iπ

(|m|
q

)
q2∓ io−m2

eiqt =
(

1

±ε(t)
)

e±i |mt|

Bicone:R∨ ] R∧ 3 t 7→
∫

dq

iπ

(|m|
q

)
q2

P−m2
eiqt = ε(t)

(
i sin|m|t
cosmt

)
Group:R 3 t 7→

∫
dq

(|m|
q

)
ε(q)δ(q2−m2)eiqt =

(
i sin|m|t
cosmt

)
Group:R 3 t 7→

∫
dq

(|m|
q

)
δ(q2−m2)eiqt =

(
cosmt

i sin|m|t
)

By derivation with respect to the invariant there arise distributions with nontrivial
nildimensions 1

(q2−m2)1+N .
The convolution properties can be read off the time function multiplication.

The Feynman energy-distributions combine real–imaginary and order properties
of time t and energiesm2 as follows
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∗
[
m2

1

]
+

[
m2

1

]
+

ϑ
(
m2

1 −m2
2

)
[m2−]−[

m2
2

]
+ [m2+]+

ϑ
(
m2

2 −m2
1

)
[m2−]+[

m2
2

]
− [m2+]−

with m± = |m1| ±m2

The Feynman distributions [m2]± for the bicone representations form unital
subalgebras. In contrast to the advanced and retarded distributions [m2]∨,∧ they
do not annihilate each other.

3.4. Noncompact Invariants

The functions with imaginary poles from a negative squared representation
invariantq2 = −m2 (noncompact invariant)

[−m2] ∼= 1

π

|m|
q2−m2

give, by their Fourier transforms, bicone representations with noncompactD(1)
matrix elements, valued in the convolution algebra5 L1(R) and the Hilbert space
L2(R)—formulated in this subsection for 1D positionz ∈ Rand momentumq ∈ Ř

R∨ × I(2) 3 z 7→


∫ dq

π

|m|
q2+m2 e−iqz = ∮ dq

2iπ

[
ϑ(−z)
q−i |m|

]
− ϑ(z)

q+i |m|e
−iqz = e−|mz|∫ dq

π

iq
q2+m2 e−iqz = ε(z)e−|mz|∫ dq

π

2m2iq
(q2+m2)2 e−iqz = |m|ze−|mz|

The representation relevant residues are taken at imaginary “momenta”q = ±i |m|
in the complex momentum plane.

The momentum functions constitute a real unital convolution algebra[−m2
1

] ∗ [−m2
2

] = [−m2
+]

The residues of the complex representation functions for compact (real) and non-
compact (imaginary) invariantµ ∈ {±|m|,±i |m|} are

µ ∈ C :
Res
µ

2

q2− µ2
= 1

µ
,

Res
µ

2q

q2− µ2
= 1

Higher order pole residues are obtained byµ2-derivations.

5 The convolution algebraL1(G) of a Lie group coincides, for a finite group, with the group algebra
CG.
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The residual normalization for the unit element of the group, possible for
compact and noncompact invariant, is different from a Hilbert space normalization,
possible for a noncompact invariant only, e.g.

∫∞
−∞ dze−|mz| = 2

|m| .

4. RESIDUAL REPRESENTATIONS OF THREE-DIMENSIONAL
POSITION (FREE PARTICLES AND BOUND WAVES)

Position representations with compact invariantsEq2 = m2 (real momenta)
are used for wave functions of quantum mechanical free scattering states (free
particles) whereas those with noncompact invariantsEq2 = −m2 (imaginary “mo-
menta”) arise in quantum mechanical bound waves.

The representations of 1D position with compact and noncompact invari-
ants can be embedded6 into rotationSO(3) compatible representations of three-
dimensional (3D) position with the radial position|z| ∼= |Ex| = r ∈ R∨ and the
compact 2-sphereÄ2 that extends the signI(2) for the two hemispheres

R = R∨ × I(2) 3 z ↪→ Ex 3 R3 ∼= R∨ ×Ä2

I(2) 3 ε(z) = z

|z| ↪→
Ex
r
∈ Ä2, r 6= 0

In the Pauli representation for position translations by traceless hermitian complex
2× 2 matrices

Ex =
(

x3 x1− i x2

x1+ i x2 −x3

)
= xaσa ∈ R3

the polar decomposition looks as follows withu ∈ SU(2) for the 2-sphereÄ2 ∼=
SU(2)/SO(2)

Ex = u

( Ex
r

)
◦
(

r 0
0 −r

)
◦ u?

( Ex
r

)
u

( Ex
r

)
=
(

cosθ2 −e−iϕ sin θ
2

eiϕ sin θ
2 cosθ2

)
= 1√

2r (r + x3)

(
r + x3 −x1 + i x2

−x1 + i x2 r + x3

)
∈ SU(2)

The Fourier transformations in 3D position are related to those in one dimension
by a radial derivative that produces the Kepler factor1

r∫
d3q

4π
µ̃(Eq2)e−i EqEx = − d

dr2

∫
dqµ̃(q2)e−iqr , E∂ = Ex

r

d

dr
= 2Ex d2

dr2

The integral over the hemisphere directed momentum modulusq3 = ε(q3)|Eq| goes
over all reals

∫∞
−∞. Therewith a function of 1D positionR 3 z 7→ f (|z|) gives a

function of 3D positionR3 3 Ex 7→ − d
dr2 f (r ), in the following called 2-sphere

spread.

6 The embedding symbol↪→ is not meant to imply a unique embedding.
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The scalar 3D position representations, nontrivial form 6= 0, use the Fourier
transforms withU(1) andD(1) matrix elements. For simple poles there arise spher-
ical waves for real momentum poles|q| = ±|m| and Yukawa potentials for imag-
inary “momentum” poles|q| = ±i |m|∫

d3q

2π2

1

Eq2∓ io−m2
e−i EqEx = e±i |m|r

r
,
∫

d3q

π2

∓i |m|
(Eq2∓ io−m2)2

e−i EqEx = e±i |m|r

∫
d3q

2π2

1

Eq2+m2
e−i EqEx = e−|m|r

r
,
∫

d3q

π2

|m|
(Eq2+m2)2

e−i EqEx = e−|m|r

which are the 2-sphere spreads of the representations of 1D positionR
e−µr

r
= 2

µ

d

dr2
e−µr , µ ∈ {∓i (|m| ± io), |m|}

Position derivations produce momentum polynomials in the numerator for non-
trivial 2-sphere representations∫

d3q

2π2

i Eq
Eq2+ µ2

e−i EqEx = −E∂ e−µr

r
= Ex

r

1+ µr

r 2
e−µr ,∫

d3q

π2

i Eq
(Eq2+ µ2)2

e−i EqEx = E∂ e−µr

µ
= Ex

r
e−µr

e.g., the Yukawa force for a noncompact invariantµ = |m|.
Nontrivial 2-sphere properties are represented with spherical harmonics( Ex

r

)L = {YL
L3

(ϕ, θ )|L3 = −L , . . . , L}, e.g., Y2(ϕ, θ ) ∼= ( Exr )2 = Ex⊗Exr 2 = 1
313. To

avoid ther = 0 ambiguity they have to be multiplied with appropriate radial pow-
ers leading to the harmonic polynomials

(Ex)L
L3
= r LYL

L3
(ϕ, θ ),

{ E∂2YL
L3

(ϕ, θ ) = L(1+L)
r 2 YL

L3
(ϕ, θ )

E∂(Ex)L
L3

= 0

The harmonic polynomials have trivial translation properties.
The scalar contributions in position representations come with Bessel func-

tions of half-integer order—the hyperbolic Macdonald functionskL for noncom-
pact invariants and the spherical Hankelh±L , NeumannnL and BesseljL functions
for compact invariants. They have angular momentumL-independent large dis-

tance behavior (kL (R), h±L (R))
R→∞→ ( e−R

R , e±i R

R ) and L-dependent small distance
behavior

kL (R) = (−R)L

(
1

R

∂

∂R

)L e−R

R
= 1

R1+ L

e−R

2L

L∑
n=0

(2L − n)!

(L − n)!

(2R)n

n!

= (±i )1+Lh±(±i R) = e−R

R
,

1+ R

R2
e−R, . . .

R→0→ 1

R1+ L
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h±L (R) = nL (R)± i j L (R) = e±i R

R
,

1∓ i R

R2
e±i R, . . .

nL (R) = cosR

R
,

cosR+ RsinR

R2
, . . .

R→0→ 1

R1+ L

jL (R) = sinR

R
,

sinR+ RcosR

R2
, . . .

R→0→ RL

To obtain residual representations, which are defined forr = 0, i.e., without
ambiguity or even singularity, the momentum degree of the numerator1

(Eq2)N(L)

and the degree of the nominator polynomial (Eq)(L) have to leave a nonnegative
nildimensionN for spin J = L

2 representations.
Therewith one obtains for the positionR3-representation matrix elements the

Dirac momentum distributions with compact invariant for spinJ and nildimension
N

(Eq)2Jδ(N)(m2− Eq2) for

{
J = 0, 1

2, 1, . . .

N = 0, 1, 2,. . .

The Fourier transformed Dirac momentum distributions starting from the simple
compact representations

R3 3 Ex 7→
∫

d3q

2π
δ(Eq2−m2)e−i EqEx = sin|m|r

r
= |m| j0(|m|r )

R3 3 Ex 7→
∫

d3q

2π
i Eqδ(Eq2−m2)e−i EqEx = Ex

r

sin|m|r − |m|r cosmr

r 2

= |m|3Ex j1(|m|r )

|m|r
describe free states (free particles). They involve spherical Bessel functions mul-
tiplied with appropriate radial powers to yield a regularr → 0 behavior

√
2

π

jL (R)

RL
=
J 1+2L

2 (R)

R
1+2L

2

=
∞∑

n=0

(
− R2

4

)n

0
(

3
2 + L + n

)
n!

In thedipoleswith compact invariants∫
d3q

π

|m| ± Eq
(Eq2∓ io−m2)

e−i EqEx =
(

12− Ex
r

)
e∓i |m|Ex

the Dirac distribution derivatives give the representations of the compact group
SU(2) ∼= exp(iR)3 with the group functions valued in the Hilbert space
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L2(SU(2))⊂L1(SU(2)) as subspace7 of the convolution algebra

R3 3 Ex 7→
∫

d3q

π
(|m| + Eq)δt (m2− Eq2)e−i EqEx

= cosmr − i
Ex
r

sin|m|r = e−i |m|Ex ∈ SU(2)

The representation matrix elements from the principal value pole for a com-
pact and noncompact invariant require a sufficiently high order pole

(Eq)2 j

(Eq2
p∓m2)2+J+N for J = 0, 1,. . .

(Eq)2 j

(Eq2
p∓m2)

5
2+J+N

for J = 1
2, 3

2, . . .

 and N = 0, 1,...

They start withdipoles for the scalars, as to be expected from the additional
Eq2-power in the Lebesque measured3q = dÄ2Eq2d|Eq|, and withtripoles for the
vectors

R3 3 Ex 7→
∫

d3q

π2

|m|(Eq2
P ∓m2

)2 e−i EqEx = (sin|m|r, e−|m|r )

∫
d3q

π2

i Eq(Eq2
P ∓m2

)2 e−i EqEx = Ex
r

(− cosmr, e−|m|r )

R3 3 Ex 7→
∫

d3q

π2

4m2i Eq(Eq2
P ∓m2

)3 e−i EqEx = |m|Ex(sin|m|r, e−|m|r )

The dipole for the vector is ambiguous forr = 0. Representation matrix elements
for nontrivial nildimension arise by derivatives (∂

∂|m| )
N producing higher order

poles and additional radial powersr N .
For noncompact invariant the Fourier transforms are valued in the position

Hilbert spaceL2(R3) and in the convolution algebraL1(R3). The scalar dipoles
and the vector tripoles, etc., are position representations by Schr¨odinger functions

|1, E0〉 ∼ e−|m|r = ∫ d3q
π2

|m|
(Eq2+m2)2 e−i EqEx, |m| = 1

|2, E1〉 ∼ 2|m|Exe−|m|r = ∫ d3q
π2

8m2i Eq
(Eq2+m2)3 e−i EqEx, |m| = 1

2

They arise as knotless waves|k, EL〉 of the nonrelativistic hydrogen atom (Messiah,
1965) with angular momentumEL ∼= (L , L3) and principal quantum numberk—
the inverse of the quantized “imaginary” momentum|Eq| = ±i |m| as invariant for

7 For compact spaces one hasL p(T) ⊆ Lq(T) for p ≥ q.
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the position representation

|k, EL〉 ∼ (2|m|Ex)L L N
1+2L (2|m|r )e−|m|r

E = Eq
2

2
= −m2

2
, |m| = 1

k
, k = 1+ L + N

The degree of the Laguerre polynomials

L N
λ (ρ) =

(
ρ−λeρ

d

dρ
ρλe−ρ

)N
ρN

N!

=
N∑

n=0

(
λ+ N
λ+ n

)
(−ρ)n

n!
,

{
R 3 λ 6= −1,−2, . . .
N = deg LN

λ

is the radial quantum number (knot number). Nontrivial knots, i.e., nildimensions
N = 1, 2,...are obtained by operating with the Laguerre polynomialsr Ne−|m|r =(

d
d|m|

)N
e−|m|r , e.g., for one knot

|2, E0〉 ∼ (2− 2|m|r )e−|m|r = ∫ d3q
π2

4|m|(Eq2−m2)
(Eq2+m2)3 e−i EqEx, |m| = 1

2

|3, E1〉 ∼ 2|m|Ex(4− 2|m|r )e−|m|r = ∫ d3q
π2

48m2i Eq(Eq2+m2)
(Eq2+m2)4 e−i EqEx, |m| = 1

3

The convolutions can be read off from the matrix elements, e.g.

1

π2

|m1|
(Eq2+m2

1)2
∗ 1

π2

|m2|Eq(Eq +m2
2

)3 = 1

π2

|m+|Eq(Eq +m2+
)3 , |m+| = |m1| + |m2|

The residues of the scalar complex representation functions with the complexified
radial degree of freedom, e.g.

R×Ä2 ↪→ C×Ä2 3 Eq = |Eq| Eq|Eq| 7→
1

Eq2− µ2
∈ C

have to take into account the 2-sphere degrees of freedom

µ ∈ C : Res
µ

4µ(Eq2− µ2
)n = ∮

µ

d3q

2iπ2

4µ(Eq2− µ2
)n = ∮

µ

dq

2iπ

4µq2(Eq2− µ2
)n

=
{

2µ2, n = 1
1, n = 2

The additional normalization factor1
π

is discussed in the next section.
The residual normalization is used for the representation of the unit in a Cartan

subgroup, e.g.,SO(2) ⊂ SO(3) or SO0(1, 1)⊂ SO0(1, 3)/SO(3). It is different
from a quadratic form normalization, e.g., with the invariant bilinear Killing form
of theSO(3)-Lie algebra.
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5. RESIDUAL NORMALIZATIONS

For the characteršRd
of the translationsRd with a signature (d − s, s) metric

one has the residual normalizations (Gel’ fand and Shilov, 1958) for positive and
negative invariantsµ2 (where the0-functions are defined)

O(d − s, s) E×Řd
:

µ2, ν ∈ R



∫ ddq
(±i )s

√
πd

0( d
2+1+ν)

(q2∓io−µ2)
d
2+1+ν = 2

d

∫ ddq
(±i )s

√
πd

q20( d
2+2+ν)

(q2∓io−µ2)
d
2+2+ν

= 0(1+ν)
(∓io−µ2)i+ν=


0(1+ν)

(−µ2
P)1+ν ± iπδ(ν)(µ2), ν = 0, 1, 2,. . .

0(1+ν)[ϑ(−µ2)+e±iπ (1+ν)ϑ(µ2)]
|µ2|1+ν , ν 6= 0, 1, 2,. . .

with the relevant examples for definite signatures (energy and momenta) and in-
definite ones for Minkowski energy–momentaŘ1+s

Ř1
: ± ∫ dq

iπ
1

q2∓io−µ2

O(3) E× Ř3
: ± ∫ d3q

iπ2
1

(Eq2∓io−µ2)2

 = ϑ(µ2)∓ iϑ(−µ2)

|µ|

O(1, 1) E× Ř2
: ± ∫ d2q

iπ
1(

q2
0−q2

3∓io−µ2
)2

O(1, 3) E× Ř4
: ∓ ∫ d4q

iπ2
1(

q2
0−Eq2∓io−µ2

)3

 =
1

µ2
P

± iπδ(µ2)

This shows the addional normalization factor± 1
π

if the residues of positionR are
embedded into positionR3 ∼= RV ×Ä2.

6. RESIDUAL REPRESENTATIONS OF
TWO-DIMENSIONAL SPACETIME

Residual time and position representations can be embedded into Minkowski
spacetime representations. They employ energy–momentum distributions whose
Lorentz invariant singularities determine the embedded representations of both
time and position.

Two-dimensional (2D) Minkowski spacetime in a diagonal (2× 2)-matrix
representation

x =
(

x0+ x3 0

0 x0− x3

)
= x012+ x3σ3 ∈ R2 ∼= (R∨ ] R∧)⊕ (I(2)× R∨)

is acted upon with the orthochronous Lorentz group (dual dilatations)

SO0(1, 1) : x0± x3 7→ e±ψ3 (x0± x3)
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(without rotation degrees of freedom). It is the noncompact abelian substructure
of the Lorentz groupSO0(1, 3) of four-dimensional (4D) spacetimeR4.

6.1. Energy–Momentum Distributions

The scalar energy–momentum distributions—(anti-) Feynman and causal
(advanced, retarded)—are distinguished by their energyq0 behavior. They are
combinations of the (anti-)symmetric Dirac distribution with the principal value
distribution

Feynman:± 1

iπ

1

q2∓ io−m2
= δ(q2−m2)± 1

iπ

1

q2
P −m2

Causal:± 1

2iπ

1

(q2∓ io)2−m2
= 1

2

[
ε(q0)δ(q2−m2)± 1

iπ

1

q2
P −m2

]
with (q ∓ io)2 = (q0∓ io)2− q2

3(
1

ε(q0)

)
δ(q2−m2) = δ∨(q2−m2)± δ∧(q2−m2)

Multipoles arise by derivations with respect to the invariantm2.
The Fourier transformedd2q = dq0dq3 Dirac distribution for energy–

momenta∫
d2qδ(q2−m2)eiqx = −πN0

(√
m2x2

4

)

= ϑ(x2)πN0

(√
m2x2

4

)
+ ϑ(−x2)2K0

(√
−m2x2

4

)
comes with the order 0 Neumann function for real argument (timelike) which is
the Macdonald function for imaginary argument (spacelike)

R 3 ξ 7→ πN0(ξ ) =
∞∑

n=0

(
− ξ2

4

)n

(n!)2

[
log
|ξ2|
4
+ 2γ0− 2ϕ(n)

]
= −2K0(−i ξ )

ϕ(0) = 0, ϕ(n) = 1+ 1

2
+ · · · + 1

n
, n = 1, 2,. . .

γ0 = −0′(1)= limn→∞[ϕ(n)− logn] = 0.5772. . .

The advanced and retarded Fourier transforms are causally supported∫
d2q

iπ

1

q2
P −m2

eiqx = ε(x0)
∫

d2qε(q0)δ(q2−m2)eiqx

= iπϑ(x2)E0

(
m2x2

4

)
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They involve Bessel functions of integer order

R 3 ξ 7→ EL

(
ξ2

4

)
= JL (ξ )(

ξ

2

)L =
∞∑

n=0

(
− ξ2

4

)n

(L + n)!n!

=
(
− ∂

∂
ξ2

4

)L

E0

(
ξ2

4

)
,

L = 0, 1,. . . E0

(
ξ2

4

)
= J0(ξ ), (1+ L)E1+L

(
ξ2

4

)
= EL

(
ξ2

4

)
+ ξ

2

4
E2+L

(
ξ2

4

)
The Feynman propagators proper—for particles—have first order poles—

they come with the Hankel functionsH∓0 = N0∓ iJ0

±
∫

d2q

iπ

1

q2∓ io−m2
eiqx = −πϑ(x2)H∓0

(√
m2x2

4

)

+ϑ(−x2)2K0

(√
−m2x2

4

)
Fourier transformed Lorentz vectors

± 1

2iπ

q

(q ∓ io)2−m2
, ± 1

iπ

q

q2∓ io−m2
, etc.

are obtained by spacetime derivation∂ = 2x ∂
∂x2 , e.g.∫

d2q

iπ

q

q2
P −m2

eiqx = ε(x0)
∫

d2q qε(q0)δ(q2 −m2)eiqx

= π∂ϑ(x2)E0

(
m2x2

4

)
= π x

2

[
δ

(
x2

4

)
− ϑ(x2)m2E1

(
m2x2

4

)]

6.2. Time and Position Frames

The partial Fourier transformations with respect to energy and momentum
display the spacetime embedded time and position representations

πg(m2, x) =
∫

d2q eiqxg̃(m2, q) =
∫

dq3 e−iq3x3g(q0, x0)

=
∫

dq0 eiq0x0
[
ϑ
(
q2

0 −m2
)c

(q3, x3)+ ϑ(m2− q2
0

)
gnc(iq3, x3)

]
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Time:R 3 x0 7→ g(q0, x0)

Position:R 3 x3 7→
{

g(q3, x3)
gnc(iq3, x3)

Time and Position Representations forR2-Spacetime

Time (compact) Position (compact) Position (noncompact)

g̃(m2, q) g(q0, x0) gc(q3, x3) gnc(iq3, x3)

q0 =
√

m2 + q2
3 q3 =

√
q2

0 −m2 iq3 = |Q| =
√

m2 − q2
0

Lorentz scalars
δ(m2 − q2) cosq0x0

q0

cosq3x3
q3

0

ε(q0)δ(m2 − q2) i sinq0x0
q0

ε(q0) cosq3x3
q3

0

1
iπ

1
q2

P−m2 ε(x0)i sinq0x0
q0

i sinq3|x3|
q3

i e−|Qx3|
|Q|

Lorentz vectors

qδ(m2 − q2)

(
i sinq0x0

q3
q0

cosq0x0

) ( q0
q3

cosq3x3

i sinq3x3

)
0

qε(q0)δ(m2 − q2)

(
cosq0x0

q3
q0

i sinq0x0

)
ε(q0)

( q0
q3

cosq3x3

i sinq3x3

)
0

1
iπ

q
q2

P−m2 ε(x0)

(
cosq0x0

q3
q0

i sinq0x0

)
−
( q0

q3
i sinq3|x3|

ε(x3) cosq3x3

) (
i q0
|Q|

ε(x3)

)
e−|Qx3|

The higher order poles arise by derivation

∂

∂|m| = 2|m| ∂
∂m2
∼= |m|

q0

∂

∂q0

∼= −|m|
q3

∂

∂q3

∼= |m|
Q

∂

∂|Q|
The Dirac distributions involve time and position representations with com-

pact invariant, the principal value part, in addition, also position representations
with noncompact invariantq2

3 = −(m2− q2
0)

1

−q2
P +m2

= ϑ (q2
0 −m2

) 1

q2
3 −

(
q2

0 −m2
) + ϑ (m2− q2

0

) 1

q2
3 +

(
m2− q2

0

)
Theprojection to time representationswill be defined by the partial Fourier trans-
formation

∫
dx3g(m2, x) leading to trivial momentumq3 = 0 (rest system), defin-

ing atime frame. Theprojection to position representationsby the partial Fourier
transformation

∫
dx0g(m2, x) leads to trivial energyq0 = 0 and defines aposition

frame

g(|m|, t) =
∫

dx3

2
g(m2, x) =

∫
d2qδ(q3)g̃(m2, q)eiqx

gnc(i |m|, z) =
∫

dx0

2
g(m2, x) =

∫
d2qδ(q0)g̃(m2, q)eiqx
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Time frames have real energies for free particles—position frames have “imagi-
nary” momenta for bound waves.

Time and Position Projection forR2 ∼= R⊕ R

Time frame (x0 = t) Position frame (x3 = z)

g̃(m2, q) g(|m|, t) gnc(i |m|, z)
(q0, q3) = (|m|, 0) (q0, q3) = (0, i |m|)

Lorentz scalars

δ(m2 − q2) cosmt
|m| 0

ε(q0)δ(m2 − q2) i sinmt
m 0

1
iπ

1
q2

P−m2 ε(t)i sinmt
m i e−|mz|

|m|
Lorentz vectors

qδ(m2 − q2)

(
i sin|m|t

0

)
0

qε(q0)δ(m2 − q2)

(
cosmt

0

)
0

1
iπ

q
q2

P−m2

(
ε(t) cosmt

0

) (
0

ε(z)e−|mz|

)
1

iπ
q(

q2
P−m2

)2

(
− t sin|mt|

2|m|
0

) (
0

−ze−|mz|
2|m|

)

In the projections there remain the compact time and the noncompact position
representations. The Dirac energy–momentum distributions embed only time pro-
jections whereas theprincipal value distributions embed both time and position
projections. The time representations have nildimensionsN = 0, 1,. . . for poles,
dipoles etc. The position projections arise from spacetime distributions with causal
supportx2 ≥ 0.

The complex representation functions for 2D spacetime, e.g.

C2 3 q 7→ q

q2−m2
∈ C2

have energy and momentum projected residues with real and imaginary
invariants—for Lorentz scalars

Res
±i |m|

2

q2−m2
=
∮
±|m|

d2q

2iπ
δ(q3)

2

q2−m2
=
∮
±|m|

dq

2iπ

2

q2−m2
= ± 1

|m|

Res
±i |m|

2

q2−m2
=
∮
±i |m|

d2q

2iπ
δ(q0)

2

q2−m2
= −

∮
±i |m|

dq

2iπ

2

q2+m2
= − 1

±i |m|
For Lorentz vectorsq = q012+ q3σ3 with tr q = 2q0 there is a trace residue for
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the energy projection

trRes
±i |m|

q

q2−m2
= tr

∮
±|m|

d2q

2iπ
δ(q3)

q

q2−m2
=
∮
±|m|

dq

2iπ

2q

q2−m2
= 1

Starting from the projections, the compact position representations are in-
duced (Folland, 1995) by the compact time representations with the eigenvalues
(q0, q3) on theSO0(1, 1)-mass hyperboloidand theSO0(1,1)-measure dq3

2
√

q2
3+m2

.

The spacetime translation representation has the cardinality ofSO0(1, 1) as its over-
countably infinite dimension. The related Dirac distributions for unitary spacetime
translation representations embed free scattering waves (free particles)

(|m|, 0) ↪→ (q0, q3) with ei |m|t ↪→ eiq0x0−iq3x3, q2
0 − q2

3 = m2

R 3 t 7→ ei |m|t , R2 3 x 7→
∫

d2q δ(q2−m2)eiqx

The noncompact position representation matrix elements are functions from the
position Hilbert space. They induce time representations with the eigenvalues (q0,
Q) on the SO(2)-mass circle. The spacetime embedding for the position bound
waves uses the principal value distributions

(0, i |m|) ↪→ (q0, i Q) with e−|mz| ↪→ eiq0x0−|Qx3|, q2
0 + Q2 = m2

R 3 z 7→ e|mz|, causalx2 ≥ 0 : R2 3 x 7→
∫

d2q
1

q2
P −m2

eiqx

6.3. Singularity Surfaces in Energy–Momenta

For time and 1D position, the representation functions

R ↪→ C ∈ q 7→ 1

q2∓m2
∈ C

are singular at points in the complex planeC ∼= R2, at{±|m|, 0} for compact and
at {(0,±i |m|)} for noncompact representations. For 2-dimensional spacetime, the
singularities of

R⊕ R ↪→ C⊕ C = C2 3 q 7→ 1

q2−m2
∈ C

are on a real 2-dimensional surface in the real 4-dimensional spaceC2 ∼= R4 with
a complex energy and a complex momentum plane

(q0, 0; q3, Q) ∈ R4 :

{
q2

0 − 02− q2
3 + Q2 = m2

q00 − q3Q = 0
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For nontrivial mass the singularity surface can be parametrized with a positive and
negative energy-like hyperboloid and a forward and backward momentum-like
hyperboloid

m2 > 0, SO0(1, 1) :

{
q2

0 − q2
3 = m2

0, (q0, q3) = m0(coshψ, sinhψ)

02− Q2 = −m2
3, (0, Q) = m3(sinhψ, coshψ)

For four spacetime dimensions the momentum-like hyperboloid has one shell only,
ε(z) ↪→ Ex

r . The singularity surface contains the circles

SO(2) :


m2

0+m2
3 = m2⇒ (m0, m3) = |m|(cosα, sinα)

q2
0 + Q2 = m2 cosh2ψ

q2
3 + 02 = m2 sinh2ψ

Therewith, the singularity surface inC2 is four times a circle, embedding the
imaginary poles for noncompactR-representations, sliding along a hyperboloid
which embeds the real poles for compactR-representations. It can be seen in the
R3-projection to real energies where the energy–momentum hyperbola touches
the energy–imaginary “momentum” circle at the two points (±|m|, 0; 0, 0)

R⊕ C 3 (q0, 0;q3, Q) :
{
q|q2

0 − q2
3 = m2, Q = 0

}
∪ {q|q2

0 + Q2 = m2, q3 = 0
}

and in theR3-projection to real momenta where there is the energy–momentum
hyperbola only

C⊕ R 3 (q0, 0; q3, 0) :
{
q|q2

0 − q2
3 = m2, 0 = 0

}
For trival invariant the circles shrink to points on the hyperbola

m2 = 0; (0, Q) = 0 or (q0, q3) = 0⇒ trival SO(2)

In 1
q2−m2 , m2 > 0, there is only one Lorentz invariant for the real 2D

hyperbolic-spherical singularity surface. For representations of nonlinear space-
time below two invariants will be introduced—to embed compact representations
eimt and noncompact onese|m|r , each kind with an independent invariant.

7. CONVOLUTIONS FOR SPACETIME

Feynman integrals as used in perturbation theory involve convolutions of
energy–momentum distributions for pointwise products of spacetime distributions.

In general they do not make sense sinceS(Řd
) is no convolution algebra.

For energy–momentum convolutions the points on the hyperbolic-spherical
singularity surfaces involved are added. The addition of compact with compact
and noncompact with noncompact invariants embed products for time and position
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representations. The characteristically new feature is the addition of compact with
noncompact invariants.

7.1. Convolution of Two-Dimensional Energy–Momentum Distributions

The product of Feynman propagators for product representations of spacetime
uses the convolution of energy–momentum distributions whereδ(

∑
j qj − q) adds

up the energy–momenta as spacetime translation eigenvalues to the eigenvalueq
of the product representation, e.g., for scalar multipole Feynman propagators

± 1

iπ

0(1+ n1)(
q2∓ io−m2

1

)1+n1
∗ · · · ∗ ± 1

iπ

0(1+ nk)(
q2∓ io−m2

k

)1+nk

=
(
± 1

iπ

)k ∫
d2q1 · · ·d2qkδ

(
k∑

j=1

qj − q

)
k∏

j=1

0(1+ nj )(
q2

j ∓ io−m2
j

)1+nj

The convoluted Feynman distributions have to be all of the same type, either all
advancedq2− io or all retardedq2+ io.

The convolution is performed by joining first the invariant determining
quadratic denominator polynomials of the energy–momentum distributions

0(ν1) · · ·0(νk)

Rν1
1 · · · Rν1

k

=
∫ 1

0
dζ1 · · ·

∫ 1

0
dζkδ(ζ1+ · · · + ζk − 1)

×ζ
ν1−1
1 · · · ζ νk−1

k 0(ν1+ · · · + νk)

(R1ζ1+ · · · + Rkζk)ν1+···+νk

ν j ∈ R, ν j 6= 0,−1,−2, . . .

e.g., for two Feynman distributions

± 1

iπ

(1
q

)
0(1+ n1)(

q2 ∓ io−m2
1

)1+n1
∗ ± 1

iπ

(1
q

)
0(1+ n2)(

q2 ∓ io−m2
2

)1+n2

= 1

iπ

∫ 1

0
dζ1,2δ(ζ1 + ζ2 − 1)

∫
d2 p

iπ

(
1 qζ1

qζ2 −p⊗ p+ q ⊗ qζ1ζ2

)
ζ

n1
1 ζ

n2
2 0(2+ n1 + n2)[

p2 ∓ io+ q2ζ1ζ2 −m2
2ζ2
]2+n1+n2

For the integration the tensorp⊗ p− q ⊗ qζ1ζ2 can be replaced by12
p2

2 − q ⊗
qζ1ζ2.

The convolution is theq-dependent residue of the relative energy–momenta
p = q1− q2

±
∫

d2 p

iπ

0(2+ n)

(p2∓ io+ a)2+n
= ±

∫
d2 p

iπ

p20(3+ n)

(p2∓ io+ a)3+n
= 0(1+ n)

(∓io+ a)1+n
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which leads to

± 1

iπ

0(1+ n1)(
q2∓ io−m2

1

)1+n1
∗ ± 1

iπ

0(1+ n2)(
q2∓ io−m2

2

)1+n2

= ± 1

iπ

∫ 1

0
dζ

ζ n1(1− ζ )n20(1+ n1+ n2)[
(q2∓ io)ζ (1− ζ )−m2

1ζ −m2
2(1− ζ )

]1+n1+n2

Here and in the following the convolutions exist only for pole orders where the
involved0-functions are defined. Elsewhere, there arise “divergencies.”

7.2. Compact and Noncompact Convolution Contributions

The convolution of two Feynman distributions fors-dimensional positionRs

±
∫

d1+sq

iπ

1

q2∓ io−m2
eiqx =

∫
d1+sq[1± ε(q0x0)]δ(q2−m2)eiqx

gives as real part the difference of the squares of Dirac and principal value contri-
butions (withε(x0)2 = 1) whereas the imaginary part contains the mixed terms

(δ1± i P1) ∗ (δ2± i P2) = δ1∗2± i P1∗2,

{
δ1∗2 = δ1 ∗ δ2− P1 ∗ P2

P1∗2 = P1 ∗ P2+ P1 ∗ δ2

The product of the order functions in the product of two Feynman propagators

[1± ε(q0x0)][1 ± ε(p0x0)] = [1+ ε(q0 p0)] ± [ε(q0)+ ε(p0)]ε(x0)

= 2[ϑ(q0)ϑ(p0)+ ϑ(−q0)ϑ(−p0)] ± [ε(q0)+ ε(p0)]ε(x0)

allows the disentanglement of the convolution

± 1

iπ

1

q2 ∓ io−m2
1

∗ ± 1

iπ

1

q2 ∓ io−m2
2

= [ϑ(+q0)δ
(
q2 −m2

1

) ∗ ϑ(+q0)δ
(
q2 −m2

2

)
+ϑ(−q0)δ

(
q2 −m2

1

) ∗ ϑ(+q0)δ
(
q2 −m2

2

)]
± 1

iπ

[
δ
(
q2 −m2

1

) ∗ 1

q2
P −m2

2

+ 1

q2
P −m2

1

∗ δ (q2 −m2
2

)]

The convolution with the singularities for nontrivial positionRs on
s-dimensional hyperboloids does not lead s-dimensional hyperboloidsδ(q2−
m2
+), but tothresholdsfor energy–momentaq2 = (q1+ q2)2 ≥ m2

+

ϑ(±q0)δ
(
q2−m2

1

) ∗ ϑ(±q0)δ
(
q2−m2

2

) ∼ ϑ(±q0)ϑ(q2−m2
+)
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Here, the energy is enough to produce two free real particles with massesm1,2.
and momentum (Eq1+ Eq2)2 ≥ 0

ϑ(±q0)ϑ(q2−m2) = ϑ(±q0)
∫ Eq2

0
δ Ep2δ

(
q2

0 − Ep2−m2
)

The convolution of two step functions at massesm1,2 gives a step function for
the sum massm+ = |m1| + |m2|. The set with alls + 1D forward (backwards)
hyperboloids{{q º |m|}|m ∈ R} is an additive cone

{q º |m1|} + {q º |m2|} = {q º |m+|}
ϑ(±q0)ϑ

(
q2−m2

1

) ∗ ϑ(±q0)ϑ
(
q2−m2

2

) ∼ ϑ(±q0)ϑ(q2−m2
+)

The convolution of compact translation representation matrix elements from the
real part of the propagator (free particles) gives corresponding matrix elements
for product representations (product of free particles). The positive and negative
energy–momentum distributions are convolution algebras, not annihilating each
other

δ = δ∨ + δ∧, δ1 ∗ δ2 = (δ1
∨ + δ1

∧
) ∗ (δ2

∨ + δ2
∧
)

P ∼ i ε(x0)(δ∨ − δ∧), P1 ∗ P2 = −(δ1
∨ − δ1

∧
) ∗ (δ2

∨ − δ2
∧
)

δ1∗2 = δ1 ∗ δ2− P1 ∗ P2 = 2
(
δ1
∨ ∗ δ2

∨ + δ1
∧ ∗ δ2

∧
) ∼ ∫

Rs

2δ1+2

with δ∨,∧ ∈ D′
(
Ř1+s
∨,∧
)

For time and energy, also the principal value part adds up the invariant poles

only for time :P1∗2 = δ1 ∗ P2+ P1 ∗ δ2 ∼ 2i ε(t)
(
δ1
∨ ∗ δ2

∨ − δ1
∧ ∗ δ2

∧
) ∼ 2P1+2

The characteristic effect of a convolution of noncompact with compact invariant
comes in the principal value part fors= 1, 3 position degrees of freedom

δ(q2−m2) ∼ ϑ(q2−m2)
1

q2
P−m2 ∼ ϑ(q2−m2) + ϑ(−q2+m2)

∪ ∪
compact (free)+ noncompact

eimt e−|mz|

The two energy–momentum dependent zeros of the denominator polynomial

−P(ζ ) = q2ζ (1− ζ )−m2
1ζ −m2

2(1− ζ ) = −q2
[
ζ − ζ1(q2)

][
ζ − ζ2(q2)

]
ζ1,2(q

2) = q2−m+m− ±
√
1(q2)

2q2
with

{
m± = |m1| ± |m2|
1(q2) = (q2−m2

+)(q2−m2
−)
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are either both real or complex conjugate to each other according to the sign of
the discriminant1(q2). Furthermore, real zeros—in the case of1(q2) ≥ 0—are
in the integrationζ -interval [0, 1] only for energy–momenta over the threshold
ϑ(q2−m2

+). Therewith, the convolution of scalar propagators for 2-dimensional
spacetime reads

R2 : ± 1

iπ

1

q2 ∓ io−m2
1

∗ ± 1

iπ

1

q2 ∓ io−m2
2

= ± 1

iπ

∫ 1

0
dζ

1

(q2 ∓ io)ζ (1− ζ )−m2
1ζ −m2

2(1− ζ )

=
∫ 1

0
dζ

[
δ
(
q2ζ (1− ζ )−m2

2ζ −m2
2(1− ζ )

)
± 1

iπ

1

q2
Pζ (1− ζ )−m2

1ζ −m2
2(1− ζ

]

= 2√
|1(q2)|

[
ϑ(q2 −m2

+)∓ 1

iπ
ϑ(−1(q2)) arctan

2
√
−1(q2)∑

(q2)

∓ 1

iπ
ϑ(−1(q2)) log

∣∣∣∣∣
∑

(q2)− 2
√
1(q2)

m2+ −m2−

∣∣∣∣∣
]

with
∑

(q2 −m2
+)+ (q2 −m2

+)

The spacetime original convolution of compact with noncompact invariants is
proportional toϑ(−q2−m2

−) and comes in the logarithm

1(−1(q2)) = −ϑ(q2−m2
+)+ ϑ(q2−m2

−)

1(1(q2)) = ϑ(q2−m2
+)+ ϑ(m2

− − q2)

∣∣∣∣∣
∑

(q2)− 2
√
1(q2)

m2+ −m2−

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
(√

m2+ − q2−
√

m2− − q2

)2

m2+ −m2−

∣∣∣∣∣∣∣∣∣
In the correspondingly computed convolution of energy distributions the in-

tegral compensates them2
−-pole from the discriminant

R : ± 1

iπ

|m1|
q2∓ io−m2

1

∗ ± 1

iπ

|m2|
q2∓ io−m2

2

= ± 1

iπ

∫ 1

0
dζ

|m1m2|[− (q2∓ io)ζ (1− ζ )+m2
1ζ −m2

2(1− ζ )
] 3

2

= ± 1

iπ

|m+|
q2∓ io−m2+
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with
1

P(ζ )
3
2

= 4

(q2−m2+)(q2−m2−)

d2√P(ζ )

dζ 2

In the convolution of two advanced or two retarded distributions the pole
integration description has to be changedq2∓ io→ (q ∓ io)2 everywhere

±
∫

d1+sq

2iπ

1

(q ∓ io)2−m2
eiqx =

∫
d1+sqε(q0)

1± ε(x0)

2
δ(q2−m2)eiqx

= ϑ(±x0)
∫

d1+sqε(q0)δ(q2−m2)eiqx

which antisymmetrizes the resulting step function above for the threshold

± 1

2iπ

1

(q ∓ io)2−m2
1

∗ ± 1

2iπ

1

(q ∓ io)2−m2
2

= ± 1

2iπ

∫ 1

0
δζ

1

(q ∓ io)2ζ (1− ζ )−m2
1ζ −m2

2(1− ζ )

= 1

2
√
|1(q2)|

[
ε(q0)ϑ(q2−m2

+)∓ 1

iπ
{· · ·}

]

7.3. Residual Product of Representation Functions

The convolutions of causal and Feynman energy–momentum distributions
can be summarized with the notation

R∗ for the different integration contours

SO0(1, 1)E×R2 : (
R∗, q2) =

{
(± ∗iπ , q2∓ io), Feynman

(± ∗
2iπ , (q ∓ io)2), causal

with the results

R :



0(1+n1)(
q2−m2

1

)1+n1

R∗ 0(1+n2)(
q2−m2

2

)1+n2
= ∫ 1

0 dζ ζ n1(1−ζ )n20(1+n1+n2)[
q2ζ (1−ζ )−m2

1ζ−m2
2(1−ζ )

]1+n1+n2

q0(1+n1)(
q2−m2

1

)1+n1

R∗ 0(1+n2)(
q2−m2

2

)1+n2
= ∫ 1

0 dζ qζ n1(1−ζ )1+n20(1+n1+n2)[
q2ζ (1−ζ )−m2

1ζ−m2
2(1−ζ )

]1+n1+n2

q0(1+n1)(
q2−m2

1

)1+n1

R∗ q0(1+n2)(
q2−m2

2

)1+n2
= ∫ 1

0 dζ
−
(

1
2 12+q⊗q ∂

∂q2

)
ζ n1(1−ζ )n20(n1+n2)[

q2ζ (1−ζ )−m2
1ζ−m2

2(1−ζ )
]n1+n2

The convolution product contains the normalization factor for the relative energy–
momentum residue integral12iπ

∮
. Therewith, it defines theresidual productlead-

ing from complex representation functions to functions for product representations.
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The corresponding residual product for time representations reads

R :


(

R∗, q) = (± ∗
2iπ , q ∓ io)

0(1+n1)
(q−m1)1+n1

R∗ 0(1+n2)
(q−m2)1+n2

= 0(1+n1+n2)
[q−(m1+m2)]1+n1+n2

The meromorphic functions, i.e., only pole singularities, on the closed complex
plane is the field of rational functions. The time representation functionsP(C)
(pole functions) have negative degree

C 3 q 7→ Pn(q)

Pm(q)
= a0+ a1q + · · · + anqn

b0+ b1q + · · · + bmqm
∈ C, aj , bj ∈ C,

bm 6= 0, n−m≤ −1

They have a residual product with unit1
q adding up the invariant singularities.

The q2-singularities for product representations disappear for the residual
product of the spacetime representation pole functions. A massless representation
function q

q2 has compact invariants only, i.e., a hyperbolic singularity surface. Its
residual product

timeR :
1

q

R∗ 1

q −m
= 1

q −m

spacetimeR :
q

q2

R∗ q

(q2−m2)2
= −

(
1

2
12+ q ⊗ q

∂

∂q2

)∫ 1

0
dζ

1

q2ζ −m2∫ 1

0
dζ

1

q2ζ −m2
= log m2−q2

m2

q2

gives logarithms as integrated representation functions

log

(
1− q2± io

m2

)
= ϑ(q2−m2)

[
±iπ + log

(
q2

m2
− 1

)]
+ϑ(−q2+m2) log

(
1− q2

m2

)
The logarithm of a quotient is typical for a finite integration (Behnke and Sommer,
1962), e.g., for a function holomorphic on the integration curve∫ b

a
dz f(z) =

∑
Res

[
f (z) log

z− b

z− a

]
,

∫ ∞
0

dz f(z) = −
∑

Res[f (z) logz]

with thesum of all residuesin the closed complex plane, cut along the integration
curve. For 2-dimensional spacetimeR2 ↪→ C2 the formulation with the sum of the
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residues looks as follows

−
∫ 1

0
dζ

1

q2ζ −m2
=

M2
(

m2

q2

)
q2

M2

(
m2

q2

)
=
∫ 1

0

dζ

ζ − m2

q2

= −
∑

Res

[
1

ζ − m2

q2

log
ζ − 1

ζ

]
= − log

(
1− q2

m2

)

8. RESIDUAL REPRESENTATIONS OF FOUR-DIMENSIONAL
SPACETIME

Four-dimensional Minkowski spacetime and its Lorentz group has—with
3D position translationsR3—additional rotation degrees of freedom from the 2-
sphereÄ2. Spacetime is used in the Cartan representation with hermitian complex
(2× 2)-matrices where the trace is the time projection

R⊕ [R∨ × I(2)] ∼= R2 ↪→ R4 ∼= R ⊕ [R∨ ×Ä2](
x0+ x3 0

0 x0− x3

)
↪→

(
x0+ x3 x1− i x2

x1+ i x2 x0− x3

)
= u

( Ex
r

)(
x0+ r 0

0 x0− r

)
u∗
( Ex

r

)
SO0(1, 1) ↪→ SO0(1, 3)∼= SO0(1, 1)×Ä2× SO(2)×Ä2

It requires rotation representations that will lead, in comparison to 2-dimensional
spacetime, to a change in the pole orders for residual representations.

8.1. Feynman Distributions

In the Feynman and causal energy–momentum distributions

Feynman:∓ 1

iπ2

0(2+ n)

(q2∓ io−m2)2+n
= − 1

π
δ(1+n)(m2− q2)∓ 1

iπ2

0(2+ n)(
q2

P−m2
)2+n

for n = −1, 0, 1,. . .

Causal:∓ 1

2iπ2

0(2+ n)

((q ∓ io)2−m2)2+n
= − 1

2π
ε(q0)δ(1+n)(m2− q2)

∓ 1

2iπ2

0(2+ n)(
q2

P−m2
)2+n



P1: GXB

International Journal of Theoretical Physics [ijtp] pp984-ijtp-472802 October 22, 2003 9:46 Style file version May 30th, 2002

Matter as Spectrum of Spacetime Representations 2001

with (q ∓ io)2 = (q0∓ io)2− q̄2

there is an additional residual normalization factor− 1
π

for the 2-sphere.
The Fourier transformationsd4q = dq0dÄ2q̄2d|Eq| in 4D spacetime are ob-

tainable from the 2D case by an invariant derivation (2-sphere spread)∫
d4q

4π

(
1

ε(q0)ϑ(q2)

)
µ̃(q2)eiqx = − ∂

∂r 2

∫
dq0dq3

(
1

ε(q0)ϑ
(
q2

0 − q2
3

))
× µ̃(q2

0 − q2
3

)
eiq0x0−iq3r

= ∂

∂x2

∫
d2q

(
1

ε(q0)ϑ(q2)

)
µ̃(q2)eiqx|x=(x0,r )

One obtains as Fourier transformation of the Dirac distribution∫
d4q

π
δ(q2−m2)eiqx = − ∂

∂ x2

4

N0

(√
m2x2

4

)
and the causally supported Fourier transforms∫

d4q

iπ2

0(2+ n)(
q2

P−m2
)2+n eiqx = ε(x0)

∫
d4q

2π
ε(q0)δ(1+n)(m2− q2)eiqx

= iπ

(
d

dm2

)1+n
∂

∂ x2

4

ϑ(x2)ε0

(
m2x2

4

)

=
 iπ

[
δ
(

x2

4

)
− ϑ(x2)m2ε1

(
m2x2

4

)]
, n = −1

−iπϑ(x2)
(
− x2

4

)n
εn

(
m2x2

4

)
, n = 0, 1,. . .

The Kepler (Yukawa) factor1r -singularity is embedded into the lightcone Dirac
distribution ∂

∂x2ϑ(x2) = δ(x2) for the simple polen = −1.
Feynman propagators of scalar particle fields come with simple poles.

8.2. Time and Position Frames

By partial Fourier transformation with respect to energy and momentum one
obtains the embedded time and position representations

πg(m2, x) =
∫

d4q

π
eiqxg̃(m2, q) =

∫
d3q

π
e−i EqExg(q0, x0)

=
∫

dq0 eiq0x0
[
ϑ
(
q2

0 −m2
)
gc(|Eq|, Ex)+ ϑ(m2− q2

0

)
gnc(i |Eq, Ex)

]
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Time and Position Representations forR4-Spacetime

Time Position (compact) Position (noncompact)

g̃(m2, q) g(q0, x0) gc(|Eq|, Ex) gnc(i |Eq|, Ex)

q0 =
√

m2 + Eq2 |Eq| =
√

q2
0 −m2 i |Eq| = |Q| =

√
m2 − q2

0

Lorentz scalars

δ(m2 − q2) cosq0x0
q0

2sin|Eq|r
r 0

ε(q0)δ(m2 − q2) i sinq0x0
q0

2ε(q0) sin|Eq|r
r 0

ε(q0)δ′(m2 − q2)
x2

0
2q0

i j1(q0x0) ε(q0) cos|Eq|r
|Eq| 0

1
iπ

1
q2

P−m2 ε(x0)i sinq0x0
q0

•2i cos|Eq|r
r •2i e−|Q|r

r

1
iπ

1(
q2

P−m2
)2 ε(x0)

x2
0

2q0
i j1(q0x0) −i sin|Eq|r

|Eq| −i e−|Q|r
|Q|

Lorentz vectors

qδ(m2 − q2)

 i sinq0x0

Eq
q0

cosq0x0

 2Eq2

( q0
|Eq| j0(|Eq|r )

Ex
r i j1(|Eq|r )

)
0

qε(q0)δ(m2 − q2)

(
cosq0x0

Eq
q0

i sinq0x0

)
ε(q0)2Eq2

( q0
|Eq| j0(|Eq|r )

Ex
r i j1(|Eq|r )

)
0

qε(q0)δ′(m2 − q2) − x2
0
2

(
j0(q0x0)

Eq
q0

i j1(q0x0)

)
ε(q0)

( q0
|Eq| cos|Eq|r
Ex
r i sin|Eq|r

)
0

1
iπ

q
q2

P−m2 ε(x0)

(
cosq0x0

Eq
q0

i sinq0x0

)
•2Eq2

( q0
|Eq| in0(|Eq|r )

− Exr n1(|Eq|r )

)
•2|Q|2

(−i q0
|Q|k0(|Q|r )

Ex
r k1(|Q|r )

)
1

iπ
q(

q2
P−m2

)2 −ε(x0)
x2

0
2

(
j0(q0x0)
Eq

q0
i j1(q0x0)

)
◦ −

( q0
|Eq| i sin|Eq|r
Ex
r cos|Eq|r

)
◦ −

(
i q0
|Q|
Ex
r

)
e−|Q|r

with—for higher order poles

∂

∂|m| = 2|m| ∂
∂m2
∼= |m|

q0

∂

∂q0

∼= −|m||Eq|
∂

∂|Eq|
∼= |m||Q|

∂

∂|Q|
There arise the scalar and vector Bessel functionsjL = 0, 1 (spherical waves for
free particles), Neumann functionsnL , and Macdonald functionskL (for Yukawa
interactions and forces).r = 0-singular andr = 0-ambiguous elementsExr which
are no position representations come with simple and double poles and are marked
with • and◦ resp.

With the embeddingR2 ↪→ R4 the time representationsR ↪→ R remain sim-
ple poles, the position representationR ↪→ R3 come as scalar dipoles and vec-
torial tripoles as seen in the projections for trivial momentaEq = 0 (time frame)
and trivial energy q0 = 0 (position frame with “imaginary” momenta),
respectively.
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Time and Position Projection forR4 ∼= R⊕ R3

Time frame (x0 = t) Position frame

g̃(m2, q) g(|m|, t) = ∫ d3x
8π g(m2, x) gnc(i |m|, Ex) = ∫ dx0

2 g(m2, x)
(q0, Eq) = (|m|, 0) (q0, |Eq|) = (0, i |m|)

Lorentz scalars
δ(m2 − q2) cosmt

|m| 0

ε(q0)δ(m2 − q2) i sinmt
m 0

1
iπ

1
q2

P−m2 ε(t)i sinmt
m •2i e−|m|r

r

1
iπ

1(
q2

P−m2
)2 ε(t)i sin|m|t−|m|t cosmt

2|m|3 −i e−|m|r
r

Lorentz vectors

qδ(m2 − q2)

(
i sin|m|t

0

)
0

qε(q0)δ(m2 − q2)

(
cosmt

0

)
0

1
iπ

q
q2

P−m2 ε(t)

(
cosmt

0

)
•
 0

2 Exr
1+|m|r

r 2 e−|m|r


1

iπ
q(

q2
P−m2

)2 ε(t)

− t sin|m|t
2|m|

0

 ◦
(

0
− Exr

)
e−|m|r

1
iπ

q(
q2

P−m2
)3 ε(t)

 t sin|mt|−|mt| cosmt
4|m|3

0

 (
0
Ex
)

e−|m|r
2|m|

The time representations from the Dirac and principal value distributions have
nildimensionsN = 0, 1, 2 for poles, dipoles, tripoles. Ther = 0 regular nonam-
biguous position representation matrix elements are the knotless Kepler bound
state wave functions above, embedded into the principal value energy–momentum
distributions for spacetime representations with timelike supportx2 > 0

|1, E0〉 ∼ e−|m|r ↪→
∫

d4q

π2

|m|(
q2

P −m2
)2 eiqx

|2, E1〉 ∼ 2|m|Exe−|m|r ↪→
∫

d4q

iπ2

4m2q(
q2

P −m2
)3 eiqx

The complex representation functions for 4-dimensional spacetime, e.g.

C2×Ä2 3 q 7→ q

q2−m2
∈ C2×Ä2

give as energy and momentum projected residues for the Lorentz scalar functions

Res
±i |m|

1

q2−m2
=
∮
±|m|

d4q

2iπ2
πδ(Eq)

1

q2−m2
=
∮
±|m|

dq

2iπ

1

q2−m2
= ± 1

2|m|



P1: GXB

International Journal of Theoretical Physics [ijtp] pp984-ijtp-472802 October 22, 2003 9:46 Style file version May 30th, 2002

2004 Saller

Res
±i |m|

1

q2−m2
=
∮
±i |m|

d4q

2iπ2
δ(q0)

1

q2−m2
= −

∮
±i |m|

d3q

2iπ2

1

q2+m2
= ∓ i |m|

2

and for the Lorentz vectorq = q012+ Eq a trace residue trq = 2q0 for the energy
projection

tr Res
±i |m|

q

q2−m2
=
∮
±|m|

dq

2iπ

2q3

q2−m2
= m2

8.3. Residual Products (Feynman Integrals)

Pointwise products of Feynman propagators convolute energy–momentum
distributions which, in general however, are not convolutable. For particle propaga-
tors, there arise undefined local products (“divergencies”) of generalized functions
from the imaginary principal value for the causally supported part
1

iπ
1

q2
P−m2 ∼ iπδ(x2)+ · · ·

[
− 1

x2
P

+iπδ(x2)+ · · ·
]
•
[
− 1

x2
P

+iπδ(x2)+ · · ·
]

∼
[
δ
(
q2−m2

1

)+ 1

iπ

1

q2
P−m2

1

]
∗
[
δ
(
q2−m2

2

)+ 1

iπ

1

q2
P−m2

1

]
The convolution of two Feynman distributions

∓ 1

iπ2

(1
q

)
0(2+ n1)(

q2∓ io−m2
1

)
2+n1
∗ ∓ 1

iπ2

(1
q

)
0(2+ n2)(

q2∓ io−m2
1

)
2+n2

= 1

iπ2

∫ 1

0
dζ1,2δ(ζ1+ ζ2− 1)

∫
d4 p

iπ2

(
1 qζ1

qζ2 −p⊗ p+ q ⊗ qζ1ζ 2

)
ζ

1+n1
1 ζ

1+n2
2 0(4+ n1+ n2)[

p2∓ io+ q2ζ1ζ2−m2
1ζ1−m2

2ζ2
]4+n1+n2

involves the tensorp⊗ p− q ⊗ qζ1ζ2⇒ p2

4 14− q ⊗ qζ1ζ2 for the vector–vector
convolution. Taking theq-dependent residue of the relative energy–momenta

∓
∫

d4 p

iπ2

0(3+ n)

(p2∓ io+ a)3+n
= ∓1

2

∫
d4 p

iπ2

p20(4+ n)

(p2∓ io+ a)4+n
= 0(1+ n)

(∓io+ a)1+n
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and with the notation for the different contours

SO0(1, 3)E×R4 : (
R∗, q2) =

{(∓ ∗
iπ2 , q2∓ io

)
, Feynman(∓ ∗

2iπ2 , (q2∓ io)2
)

, casual

the residual scalar–scalar, vector–scalar, and vector–vector product reads

R4 :



0(2+n1)(
q2−m2

1

)2+n1

R∗ 0(2+n1)(
q2−m2

2

)2+n1
= ∫ 1

0 dζ ζ 1+n1(1−ζ )1+n20(2+n1+n2)[
q2ζ (1−ζ )−m2

1ζ−m2
2(1−ζ )

]2+n1+n2

q0(2+n1)(
q2−m2

1

)2+n1

R∗ 0(2+n2)(
q2−m2

2

)2+n1
= ∫ 1

0 dζ qζ 1+n1(1−ζ )2+n20(2+n1+n2)[
q2ζ (1−ζ )−m2

1ζ−m2
2(1−ζ )

]2+n1+n2

q0(2+n1)(
q2−m2

1

)2+n1

R∗ q0(2+n2)(
q2−m2

2

)2+n1
= ∫ 1

0 dζ
−
(

1
2 14+q⊗q ∂

∂q2

)
ζ 1+n1(1−ζ )1+n20(1+n1+n2)[

q2ζ (1−ζ )−m2
1ζ−m2

2(1−ζ )
]1+n1+n2

Theq2-poles in the residual products for the energy and momentum rational
complex functions disappear in the residual product of the energy–momentum pole
functions

q

q2

R∗ 2q

(q2−m2)3
= −

(
1

2
14+ q ⊗ q

∂

∂q2

)
1

q2

∫ 1

0
dζ

1− ζ
ζ − m2

q2

q

(q2)2

R∗ 2q

(q2−m2)3
= −

(
1

2
14+ q ⊗ q

∂

∂q2

)
1

(q2)2

∫ 1

0
dζ

ζ(
ζ − m2

q2

)2

with the residue sum in the closed complex plane (there is a nontrivial residue at
the holomorphic pointζ = ∞), e.g.

M2

(
m2

q2

)
= −

∫ 1

0
dζ

1− ζ
ζ − m2

q2

= −
∑

Res
1− ζ
ζ − m2

q2

Log
ζ − 1

ζ

= 1−
(

1− m2

q2

)
log

(
1− q2

m2

)

9. LORENTZ COMPATIBLE SPIN EMBEDDING

The embedding of position representations into Minkowski spacetime has to
embed the harmonic momentum polynomials (Eq)2J = |Eq|2JY2J(ϕ, θ ) and has to
interpret this embedding with respect to time representations involved.

The connection between spinSO(3) and its coveringSU(2) to the Lorentz
groupSO0(1, 3) with its coveringSL(C2) is given by transmutators as represen-
tatives of the symmetric spaceSL (C2)/SU(2)∼= SO0(1, 3)/SO(3), i.e., of the
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orientation manifold of the spin group. All those transmutators (boost representa-
tions) are products of the two (2× 2) transmutators from Pauli spinorsV ∼= C2 to
left and right handed Weyl spinorVL

∼= C2 ∼= VR

s(q) : V 7→ VL , ŝ(q) : V 7→ VR, ŝ= S−1∗

parametrizable with normalized positive energy–momenta

q2 > 0,
q√
q2
= q = q

0
12+ Eq =

(
q

0
+ q

3
q

1
− iq

2

q
1
+ iq

2
q

0
− iq

3

)
q̌ = q

0
12+ Eq, q2 = 1= q̌2

Both Weyl transmutators embed the unit12 for the Pauli spinor space and the
spherical harmonicsY1(ϕ, θ ) = Eq

|Eq| into the normalized energy–momenta

s(q)12s∗(q) = q, ŝ(q)12ŝ∗(q) = q̌, s(q), ŝ(q) = s(q̌) ∈ SL(C2)

⇒ s(q) = u

( Eq
|Eq|
)
◦ e

β

2 σ3 ◦ u∗
( Eq
|Eq|
)

, tanhβ = q0

|Eq| , u

( Eq
|Eq|
)
∈ SU(2)

= 1√
2(1+ q

0
)

(
1+ q

0
+ q

3
q

1
− iq

2

q
1
+ iq

2
1+ q

0
− q

3

)

Now the general case: anSU(2)-representation [2J] with spin J = 0, 1
2, . . .

is embedded into finite dimensional irreducible representations [2L|2R] with left
and right “spin”L, R of the Lorentz groupSL(C2) for

[2J] ↪→ [2L|2R] for

{
L + R≥ J

L + R+ Jinteger

with theSU(2)-decomposition

[2L|2R] ∼= L+R⊕
J=|L−R|

[2J], C(1+2L)(1+2R) ∼= L+R⊕
J=|L−R|

C1+2J

The Lorentz group acts upon the totally symmetrized products
2L∨

VL ⊗
2R∨

VR
∼=

C(1+2L)(1+2R) of Weyl spaces. The transmutators

s[2L|2R] (q) =
2L∨

s(q)⊗
2R∨

ŝ(q) :
2L∨

V ⊗
2R∨

V →
2L∨

VL ⊗
2R∨

VR

allow the Lorentz compatible embedding of spin properties.
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For example, the Minkowski representation of the boosts

s[1|1](q) : V ⊗ V → VL ⊗ VR

s[1|1](q) = s(q)⊗ ŝ(q) = 3(q) =
q

0
Eq

Eq 13+ Eq⊗Eq
1+q

0

 ∈ SO0(1, 3)

gives the Lorentz compatible embeddings with the projectors for spin 0 and 1

VL ⊗ VR
∼= C4 = C⊕ C3,


3(q)

(
1 0
0 0

)
3−1(q) = q ⊗ q̌ ∼= q j qk

q2

3(q)

(
0 0
0 13

)
3−1(q) = 14− q ⊗ q̌ ∼= δ j

k − q j qk
q2

This example is characteristic: the totally symmetric spherical harmonics are
embedded for integer spin in symmetricSO0(1, 3)-representations

j = 0, 1,. . . : [2J] ↪→ [2L|2L] with 2L ≥ J( Eq
|Eq|
)2J

↪→ (q)4L
2J =

2L∨
q

2J⊗
2L∨

q̌

with the decomposition of the unit matrix into projectors

J = 0, 1,. . . : 1(1+2L)2 = 2L⊕
J=0

(q)4L
2J , (q)4L

2J = s[2L|2L] (q)11+2Js−1[2L|2L] (q)

(q)4L
2J ◦ (q)4L

2J ′ = δJ J′ (q)4L
2J

In generalization of the two Weyl representations there arise two embedding
types for half-integer spin, conjugated to each other. They can be Clebsch–Gordan
composed from the two Weyl transmutators

J = 1

2
,

1

3
, . . . : [2J] ↪→

{
[1+ 2L|2L]

[2L|1+ 2L]
with 2L ≥ J − 1

2

( Eq
|Eq|
)2J

↪→


(q)1+4L

2J =
1+2L∨

q
2J⊗

2L∨
q̌

(q̌)1+4L
2J =

2L∨
q

2J⊗
1+2L∨

q̌

An appropriate D(1)-dilatation factor gives transmutators fromU(2)
to GL (C2), i.e., representatives of the symmetric spaceGLC2/U(2)

q2 ≥ 0 : s(q) =
√

q2s(q) = u

( Eq
|Eq|
)
◦
√

q2e
β

2 σ3 ◦ u∗
( Eq
|Eq|
)
∈ GL (C2)
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Therewith the harmonic polynomials are Lorentz compatibly embedded( Eq
|Eq|
)2J

↪→ (q)K
2J , (Eq)2J ↪→ (q)N

2J = (
√

q2)2K (q)N
2J

with the examples from above for Lorentz scalar, left and right Weyl spinor and
Lorentz vector (with the projectors14 = 11 + 13)

(Eq)0 ↪→ (q)0
0 = 1, (Eq)1 ↪→

{
(q)1

1 = q = s(q)12s∗(q)

(q̌)1
1 = q̌ = ŝ(q)12ŝ∗(q)

Convolutions of energy–momenta are understood to involve also the tensor
products of the spin representations. For example, in the vector–vector convolution
above there arises the projectors for spin 0 and 1

q ∗ q̌⇒ 1

2
14+ q ⊗ q̌

∂

∂q2
= 1

2
(q)2

2+
[

1

2
+ q2 ∂

∂q2

]
(q)2

0

10. RESIDUAL REPRESENTATIONS OF FUTURE CONES

Causal (advanced and retarded) and Feynman multipole energy–momentum
distributions lead—via their Fourier transforms with appropriate integration
contours—to representation matrix elements of different symmetric spaces—of
the causal bicone (future and past cone) and of the tangent spacetime translations,
respectively. Feynman distributions withδ(q2−m2) from a simple pole represent
spacetime translations as inhomogeneous subgroup of irreducible unitary Poincar´e
group representations, acting on free particles. The representations of the future
cone as model of nonlinear spacetime (Saller, 1999, 2001b) involves higher order
energy–momentum poles. They are no particle propagators. They will be used
to determine the masses and normalization of particles for the construction of
Feynman propagators.

10.1. Spacetime Future Cones

One dimensional time future is embedded into the future cones of 2D and 4D
Minkowski spacetime

R∨ 3 t∨ = ϑ(t)t ↪→ ϑ(x0)ϑ(x2)

(
x0+ x3 0

0 x0− x3

)
= x∨ ∈ R2

∨

↪→ ϑ(x0)ϑ(x2)

(
x0+ x3 x1− i x2

x1+ i x2 x0− x3

)
= x∨ ∈ R4

∨
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with associated orthochronous groups—trivial, abelian, simple

{1} = SO(1) ↪→ SO0(1, 1) ↪→ SO0(1, 3)

Time future is the causal groupD(1) = expR

R∨ 3 t∨ = eψ
0 ∈ D(1)

R∨ ∼= D(1)∼= GL (C)/U(1)

The 2-dimensional future cone is the direct product of causal group and selfdual
Lorentz dilatation group

R2
∨ 3 x∨ =

(
x0
∨ + x3 0

0 x0
∨ − x3

)
= eψ

0+σ3ψ3
with

 x2
∨ = e2ψ0

x0
∨+x3

x0∨−x3 = e2ψ3

R2
∨ ∼= D(1)× SO0(1, 1)

The 4-dimensional future cone is a homogeneous space with 2-dimensional future
R2
∨ as abelian Cartan substructure

R4
∨ 3 x∨ =

(
x0
∨ + x3 x1− i x2

x1+ i x2 x0
∨ − x3

)
= eψ

0+ Eψ = u

( Ex
r

)
◦ eψ

0+σ3|ψ | ◦ u

( Ex
r

)∗

with

 x2
∨ = e2ψ0

, x0
∨+r

x0∨−r
= e2| Eψ |

Eψ
| Eψ | = Exr , u( Exr ) ∈ SU(2)

R4
∨ ∼= D(1)× SO0(1, 3)/SO(3)

∼= D(1)× SO0(1, 1)×Ä2 ∼= GL (C2)/U(2)

The cones as irreducible orbits ofD(1) × SO0 (1,s), s= 0, 1, 3 are used
as strict futures, open without “skin,” i.e., without the strict presencex = 0 and
without lightlike translations for nontrivial positions= 1, 3

x∨ ∈ R1+s
∨ ⇒ x2

∨ > 0

1D and 4D future are the first two entries of the symmetric space chain
GL (Cn)/U(n), n = 1, 2,. . . , which are the manifolds of the unitary groups in
the general linear group, canonically parametrized in the polar decompositiong =
u ◦ |g|with the realn2-dimensional ordered absolute valuesx∨ = |g| = √g∗ ◦ g ∈
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Rn2

∨ of the general linear group. They are the positive cone of the orderedC∗-
algebras with the complexn× n matrices.

In residual representations the future coneR1+s
∨ = G/H is canonically

parametrized by translations which constitute the tangent space logG/H of the
future cone

R1+s ∼=
 logD(1), s= 0

logD(1)⊕ logSO0(1, 1), s= 1
logGL (C2)/U(2), s= 3

The cone is embedded into its tangent space. The future coneR4
∨ ∼= GL (C2)/U(2)

as the orientation manifold of unitary groups is taken as model for nonlinear
spacetime. TheGL (C2)-action by left multiplication involves the external Lorentz
group. The groupU(2) of the equivalence classes is used for internal degrees of
freedom (hyperisospin). The related structures (Saller, 1998, 2001b) will not be
considered in more detail in the following.

10.2. Residual Representations of Time Future

The residual representations of time future by the advanced energy distribu-
tions are characterized by one compact invariant and nildimensionN

1

2iπ

0(1+ N)

(q − io−m)1+N
= 1

2

[
δ(N)(m− q)+ 1

iπ

0(1+ N)

(q P−m)1+N

]
They are representation matrix elements of the causal groupD(1)

R∨ 3 t∨ 7→
∫

dq

2iπ

0(1+ N)

(q − io−m)1+N
eiqt = (i t∨)Neimtv

10.3. Residual Representations of 2-D Future

The residual representations of 2D future will be constructed from the ad-
vanced energy–momentum distributions

1

2iπ

1

(q − io)2−m2
= 1

2

[
∈ (q0)δ(q2−m2)+ 1

iπ

1

q2
P−m2

]
With the Fourier transforms and their partial projections one obtains for the rep-
resentations of time future and position

πg(m2, x) =
∫

d2qeiqxg̃(m2, q) =
∫

dq3 e−iq3x3
g(q0, x0)

=
∫

dq0 eiq0x0 [
ϑ
(
q2

0 −m2
)
gc(q3, x3)+ ϑ(m2− q2

0

)
gnc(iq3, x3)

]
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Representations of Spacetime FutureR2∨ ∼= R∨ ⊕ R

Spacetime future Time frame Position frame
(x∨ = ϑ(x0)ϑ(x2)x) (x0∨ = t∨) (x3 = z)

g̃(m2, q) g(m2, x) g(|m|, t∨) ∈ D(1) gnc(i |m|, z) ∈ SO0(1,1)
(q0, Q3) = (|m|, 0) (q0, q3) = (0, i |m|)

1
2π

1
(q−io)2−m2 E0

(
m2x2∨

4

)
− sin|m|t∨

|m|
e−|mz|
|m|

1
2iπ

q
(q−io)2−m2 • ∂∨E0

(
m2x2∨

4

)
cosmt∨ e(z)e−|mz|

1
2iπ

q
((q−io)2−m2)2

xv
2 E0

(
m2x2∨

4

)
− tvsin|m|tv

2|m| −ze−|mz|
2|m|

∂

∂ x2

4

E0

(
m2x2

∨
4

)
= δ

(
x2
∨
4

)
−m2E1

(
m2x2

∨
4

)
with δ

(
x2
∨
) = ϑ(x0)δ(x2)

∂

∂m2

∂

∂ x2

4

E0

(
m2x2

∨
4

)
= −E0

(
m2x2

∨
4

)
, ∂∨ = ∂

∂x∨ = 2xv
∂

∂x2

With t∨ = ϑ(t)t = 1+∈(t)
2 t the time future projections, i.e., the representation

matrix elements of the causal groupD(1), are combined from Dirac and princi-
pal value contribution. The position space projections, i.e., representation matrix
elements of the orthochronous groupSO0(1, 1), come from the principal value
only.

Spacetime future representation matrix elements have to be functions, i.e.,
the Dirac distributionδ(x2

∨) on the forward lightcone in the Lorentz vector gives
no representations, marked by•. The future lightlike translations12±σ3

2 x0
∨ are no

elements of strict futurex2
∨ > 0.

Two-dimensional future is therank 2 real Lie groupD(1) × SO0(1,1). The
residual representations of these two noncompact groups will be characterized
by two invariants for the characters, both from a continuous spectrum. There-
fore, the dipole in the residual representation will be supported bytwo Lorentz
invariants for the hyperbolic-spherical singularity surface with the pole
function

1

q2−m2
0

− 1

q2−m2
3

= m2
0−m2

3(
q2−m2

0

)(
q2−m2

3

) = ∫ m2
0

m2
3

dm2 1

(q2−m2)2

By the Lorentz compatible embedding with tangentR2-translations and energy–
momenta both invariants contribute to representations of the time groupD(1) and
the position spaceSO0(1, 1).

On the lightconex2 = 0, where time and position translations coincidex3 =
±x0, the contributions from both invariants cancel each other as seen for the vector
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representation

Spacetime future:R2
∨ 3 x∨ 7→

∫ m2
0

m2
3

dm2
∫

d2q

2iπ

q

((q − io)2−m2)2
eiqx

= −xv

2
π

[
m2

0E1

(
m2

0x2v

4

)
−m2

3E1

(
m2

3x2
∨

4

)]
with the projectionx∨ = t∨12+ zσ3 on time future and position

Time future:R∨ 3 t∨ 7→
∫ m2

0

m2
3

dm2
∫

dq

2iπ

q

((q − io)2−m2)2
eiqt

= cosm0t∨ − cosm3t∨

Position:R 3 z 7→
∫ m2

0

m2
3

dm2
∫

dq

2iπ

q

(q2+m2)2
e−iqz

= ∈ (z)
e−|m0z| − e−|m3z|

2

The energy projected trace residues of the representation functions are

tr
Res
µ

m2
0−m2

3(
q2−m2

0

)(
q2−m2

3

) = { 1, µ2 = m2
0

−1, µ2 = m2
3

10.4. Residual Representations of 4D Future

Two-dimensional future is a Cartan subgroup of 4D future with additional
2-sphere degrees of freedomR4

∨/R2
∨ ∼= Ä2.

The residual representations of 4D future by advanced energy–momentum
distributions have as projections to time future and position

πg(m2, x) =
∫

d4q

π
eiqxg̃(m2, q) =

∫
d3q

π
e−i EqExg(q0, x0)

=
∫

dq0 eiq0x0 [
ϑ
(
q2

0 −m2
)
gc(|Eq|, Ex)+ ϑ(m2− q2

0

)
gnc(i |Eq|, Ex)

]
(
∂

∂ x2

4

)2

E0

(
m2x2

∨
4

)
= δ′

(
x2
∨
4

)
−m2δ

(
x2
∨
4

)
+m4E2

(
m2x2

∨
4

)
Four-dimensional future is the real homogeneous spaceGL (C2)/U(2) with

rank 2 for a Cartan subgroupD(1)× SO0(1, 1). Therefore, its residual represen-
tation will be supported by two invariants as for the 2-dimensional case with a
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Representations of Spacetime FutureR4∨ ∼= R∨ ⊕ R3

Spacetime future Time frame Position frame
(x∨ = ϑ(x0)ϑ(x2)x) (x0∨ = t∨)

g̃(m2, q) g(m2, x) g(|m|, t∨) ∈ D(1) gnc(i |m|, Ex) ∈ SO0(1,3)/SO(3)
(q0, Eq) = (|m|, 0) (q0, |Eq|) = (0, i |m|)

1
π

1
(q−io)2−m2 • − ∂

∂ x2
4

E0

(
m2x2∨

4

)
− sin|m|t∨

|m| − e−|m|r
r

1
π

1
((q−io)2−m2)2

E0

(
m2x2∨

4

)
− sin|m|t∨−|m|t∨ cos mt∨

2|m|3
e−|m|r

2|m|
1

iπ
q

(q−io)2−m2 •∂∨ ∂

∂ x2
4

E0

(
m2x2∨

4

)
cosmt∨ Ex

r
1+|m|r

r 2 e−|m|r

1
iπ

q
((q−io)2−m2)

2 •∂∨E0

(
m2x2∨

4

)
t∨sin|m|t∨

2|m|
Ex
r

e−|m|r
2

1
iπ

2q
((q−io)2−m2)3

− xv
2 E0

(
m2x2∨

4

)
− t∨(sin|m|t∨−|m|t∨cosmt∨)

4|m|3 −Ex e−|m|r
2|m|

characteristic additional dipole structure (Heisenberg, 1967) to take into account
the 2-sphere degrees of freedom in 3D position

1

q2−m2
0

− 1

q2−m2
3

− m2
0−m2

3(
q2−m2

3

)2 =
(
m2

0−m2
3

)2(
q2−m2

0

)(
q2−m2

3

)2
=
∫ m2

0

m2
3

dm2
(
m2

0−m2
) 2

(q2−m2)3

Again, both invariants contribute to representations of the time groupD(1) and the
symmetric position spaceSL(C2)/SU(2)∼=SO0(1, 1)×Ä2 ∼= R3.

There is one aditional noncompact continuous invariant compared with the
one compact mass invariantm2 of the Poincar´e group for free particles as used in
the Wigner classification

Rank Lorentz Poincar´e Expansion

1 SO0(1,1) SO0(1, 1) E×R2 SO0(2, 1)
2 SO0(1,3) SO0(1, 3) E×R4 SO0(2, 3)

With two invariants the vector representations of 4-dimensional future are

Spacetime future:R4
∨ 3 x∨ 7→

∫ m2
0

m2
3

dm2
(
m2

0 −m2
) ∫ d4q

2iπ2

2q

((q − io)2 −m2)3
eiqx

= x∨
2
π

[
m4

0E2

(
m2

0x2v

4

)
−m4

3E2

(
m2

3x2
∨

4

)
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+ (m2
0 −m2

2

)
m2

3E1

(
m2

3x2
∨

4

)]
with the projectionx∨ = t∨12+ Ex on time future and 3-dimensional position

Time future:R∨ 3 t∨ 7→
∫ m2

0

m2
3

dm2
(
m2

0−m2
) ∫ dq

2iπ

q

((q − io)2−m2)3
eiqt

= cosm0t∨ − cosm3t∨ +
(
m2

0−m2
3

) t∨sinm3t∨
2m3

Position:R3 3 Ex 7→
∫ m2

0

m2
3

dm2
(
m2

0−m2
) ∫ d3q

2iπ2

i Eq
(q2+m2)3

e−i EqEx

= Ex
r

[
1+ |m0|r

r 2
e−|m0|r − 1+ |m3|r

r 2
e−|m3|r

+ (m2
0−m2

3

)e− |m3|r
2

]
The energy projected trace residues of the representation functions are as for

the Cartan substructure

tr Res
µ

(
m2

0−m2
3

)2(
q2−m2

0

)(
q2−m2

3

)2 = Res
µ

[
2q3

q2−m2
0

− 2q3

q2−m2
3

]
=
{

1, µ2 = m2
0

−1, µ2 = m2
3

A simple pole q
q2−m2 has a positive energy projected residue, its mass can

be associated to a particle. The related irreducible time translation represen-
tation with positive normalization in an associate inner product space can be
taken over to define a Feynman propagator as Fourier transformation ofqδ(q2−
m2) with unitary representationseiqx of spacetime translations by a free par-
ticle. Dipoles q

(q2−m2)2 cannot be related to probability valued eigenvectors for
translations, they come from nondecomposable 2-dimensional nondiagonalizable
translation representations with triagonal nilpotent Jordan contributions and with
a ghost metric (Saller, 1999a,b). Product representations with a dipole can in-
volve poles for particles. A dipole 1

(q2−m2)2 has a nontrivial momentum projected
residue.

11. MATTER AS SPACETIME SPECTRUM

11.1. Residual Representations of Tangent Spaces

Complex pole functions of the translation characters (energy–momenta)q 7→
Q(q)
P(q) can be used both for the representations of a symmetric space (spacetime)
and for the representations of its tangent space (spacetime translations).
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On a symmetric space function (G/H )repr 3 x 7→ g(x) with canonical
parametrization, e.g.,xNeimx for D(1) or ei |m|Ex for SU(2), the tangent space (Lie
algebra) action involves the corresponding derivatives, e.g.

d

dx
for logD(1)∼= R,

∂

∂Ex ,
∂2

∂Ex2
for logSO0(1, 3)/logSO(3)∼= R3

Therewith atangent distributionof a symmetric space, e.g., a Lie algebra dis-
tribution for a Lie group, will be defined by an inverse derivative with an invariant
pole and a residuea1, familiar asGreen distributions of differential equations(in
general no functions). Its Fourier transform defines a complex tangent represen-
tation function. Tangent distributions come with different integration contours. In
contrast to the normalization of Cartan group representations by the group unit,
the residue of a tangent representation has to be determined by another structure
(below).

The causal group time is isomorphic to its tangent space. Therefore the tangent
representation functions with appropriate residue are also group representation
functions

time D(1)∼= R :
a1

q −m

For 3D position with the rank 2 Euclidean semidirect group there are two
types of tangent functions—for integer and half integer spin

positionSO(3) E×R3, µ2 = ±m2 :

 J = 0, 1,. . . : a−1(Eq)2J

(Eq2−µ2)I+J , e.g., a−1
Eq2−µ2

J = 1
2, 3

2, . . . : a−1(Eq)2J

(Eq2−µ2)
1
2+J

, e.g., a−1Eq
Eq2−µ2

The Fourier transforms involve the Yukawa potential and force.
The tangent functions for time and position have to be embedded into

Minkowski spacetime tangent function: For 2-dimensional spacetime one has with
the rank 1 Poincar´e group

SpacetimeSO0(1, 1) E×R2 :
a− 1

q2−m2
,

a− 1q

q2−m2

For 4-dimensional spacetime with the rank 2 Poincar´e group there are two tangent
function types

SpacetimeSO0(1, 3)E×R4 :


J = 0, 1,. . . : a−1(q)4L

2J
(q2−m2)1+2L with 2L ≥ J

J = 1
2, 3

2, . . . : a−1(q)1+4L
2J

(q2−m2)1+2L with 2L ≥ J − 1
2

e.g., a−1q
q2−m2

For a givenJ there are different embeddingsL, as discussed above.
There is a decisive difference of tangent distributions of positionR3 and 2D

and 4D spacetimeR2,4 compared with those of timeR. In general,
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tangent distributionsl ∈ G ′ are no symmetric space functionsg ∈ G, i.e., G ′ ⊇
G. They are derivatives thereof with respect to the canonical parameters, e.g.,
e−µr

2r = − d
dr2

e−µr

µ
where the Yukawa potential arise from the tangent representa-

tion functions{ 1
(Eq2+µ2)1+N |N = 0, 1,. . .} and the exponential from the symmetric

space representation functions{ 1
(Eq2+µ2)2+N |N = 0, 1,. . .}. In general, the tangent

representation functions constitute a vector space only. In contrast to the pointwise
multiplicative property of symmetric space functionsG • G → G and convolution
for their Fourier transforms̃G ∗ G̃ → G̃ the requirement of multiplicative stability
for the tangent distributions does not make sense (“divergencies”). Translations
and their representations can be added, but, in general, they cannot be multiplied.
For example, a squared Yukawa potentiale−2|m|r

r 2 does not make sense as a rep-
resentation. Or, Lie algebra representation matrix elements have no associative
multiplicative structure. However, a tangent vector space (Lie algebra) should be a
moduleG̃ ′ ∈ modG̃ with respect to the residual action with functionsG̃ for symmet-
ric space (group) representations, i.e.,G̃ ∗ G̃ ′ → G̃ ′ and for the Fourier transforms
G • G ′ → G ′

symmetric space∗ symmetric space→ symmetric space

symmetric space∗ tangent space → tangent space

For example, a Lie groupG acts adjointlyG× G′ → G′, Ad g(l ) = glg−1, upon
its Lie algebraG′ = log G or on its tensor fields.

With the tangent distributions dual to the symmetric space functions the resid-
ual product (convolution) of a tangent space function with a group function arises
in the dual product

G ′ × G → C, 〈l , g〉 =
∫

l (x)dx g(x)

=
∫

ddx
∫

ddqeiqx(l̃ ∗ g̃)(q)

= (2π )d(l̃ ∗ g̃)(0)

With 〈l , g〉 = 1 the tangent and symmetric space functions are called dual to each
other.

11.2. Eigenvalue Equations

The tangent action defines eigenfunctions for an invariantµ ∈ C by, e.g.

1

µ

d

dx
g(x) = g(x),

1

µ2

∂2

∂Ex2
g(Ex) = g(Ex),

1

µ

∂

∂Ex g(Ex) = g(Ex)
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The invariant is the solution of theeigenvalue equationfor the massless tangent
function l0, δ′ ∗ l0 = δ, (inverse derivative), e.g.,l̃0(q) = µ

q , µEqEq2 , µ
2

Eq2 , mq
q2 , with the

unit or the Lorentz compatibly embedded unit on the r.h.s.—with the
examples

TimeR :
m

q
= 1⇒ q = m

PositionR3 :
µEq
Eq2
= 12,

µ2

Eq2
= 1⇒ Eq2 = µ2

SpacetimeR1+s :
mq

q2
= 12,

m2

q2

(
11+s − q ⊗ q̌

q2

)
=
(

11+s − q ⊗ q̌

q2

)
⇒ q2 = m2

To obtain invariants for a product representation a function for a symmetric
space representation acts by residual product upon the massless tangent function
leading to another tangent function

l̃0 : G̃ → G̃ ′, g̃ 7→ l̃0 ∗ g̃

with the invariant arising from the eigenvalue equation

l̃0 ∗ g̃(q) = 1⇒ q = µ
This amounts to a normalization of theq-dependent residue arising in a
convolution.

For example, the residual action of the tangent functionm
q of abelian time

D(1) on an irreducible representation1
q−M gives m+ M as eigenvalue for the

product representation

m

q
: R∨ → R :

1

q − M
7→ m

q

R∗ 1

q − M
= m

q − M
m

q − M
= 1⇒ q = M +m

11.3. Eigenvalues for Position Bound Waves

The Hamiltonian for the nonrelativistic hydrogen atom involves the Kepler
potential that is a tangent distribution arising by Fourier transformation of a mass-
less function representing the position translationsR3

H = Ep
2

2
− 1

r P
,

1

r P
=
∫

d3q

2π2

1

Eq2
e−i EqEx
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The eigenvalue equation involves the residual product with the wave functionsg
as position representation matrix elements

Hg(Ex) = Eg(Ex) ⇐⇒
[ Eq2

2
− i

Eq2

R∗
]

g̃(Eq) = Eg̃(Eq) with
R∗ = ∗

2iπ2

The residual product of the massless tangent representation functioni
Eq2 with the

position representation functionsg̃ with invariantµ ∈ (|m|,∓i (|m| ± io)) gives
tangent representation functions, e.g., for scalar representations

i

Eq2

R∗ g̃(Eq) = l̃ (Eq) with


g̃(Eq) ∈

{∑N
n=0

a−2−n

(Eq2+µ2)2+n |a−2−n ∈ C
}

l̃ (Eq) ∈
{∑N

n=1
a−1−n

(Eq2+µ2)1+n |a−1−n ∈ C
}

e.g., for g(x) =
∫

d3q

2π2

2µ

(Eq2+ µ2)2
e−i EqEx = e−µr

⇒ i

Eq2

R∗ 2µ

(Eq2+ µ2)2
= 1

Eq2+ µ2

Therewith the eigenvalue problem can be solved by noncompact position repre-
sentation functions (Hilbert space bound waves), e.g., by the irreducible scalar
position representation for the ground state|1, E0〉 ∼ e−r[ Eq2

2
− i

Eq2

R∗
]

1

(Eq2+ µ2)2
= E

1

(Eq2+ µ2)2
⇐⇒ Eq2

2
− Eq

2+ µ2

2µ

= E⇒
{

E = −µ2

2
µ = 1

Nontrivial knotsN = 1, 2,. . . lead to the Laguerre polynomials as linear combi-
nations of position representation functions. Analogously, harmonic polynomials
for angular momentaL = 1, 2,. . . can be included.

11.4. The Invariant Mass Ratio for Spacetime

In general and in contrast to residual product stable energy and momentum

pole functions,P(C)
R∗P(C)→ P(C), the residual products of energy–momentum

q2-pole functions for representations of rank 2 nonlinear spacetimeR1+s
∨ with

hyperbolic-spherical singularity surfacesq2 = m2 do not produce rational com-
plex functions withq2-poles which would determine the invariants of product
representations. Theq2-dependent residue of the convolution gives integrals over
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rational functions, e.g.

Spacetime:
∫ 1

0
dζ

1

q2ζ −m2
=

log
(
1− q2

m2

)
q2

In the following an attempt is made to determine invariant masses and normaliza-
tions of energy–momentum poles for the representations of the time translations
R, Lorentz compatibly embedded into spacetime translationsR1+s. Perhaps, one
can characterize this as an attempt to find a Lorentz compatible solution of the
bound state problem in the potentialV3(r ) as given above in the projection of
the vector representation of nonlinear spacetimeR4

∨ to the homogeneous posi-
tion spaceSO0(1, 3)/SO(3)∼= R3. The superposition of Yukawa and exponential
potentials

EF(Ex) = − ∂

∂Ex V3(r ), V3(r ) =
∫ m2

0

m2
3

dm2
(
m2

0−m2
) ∫ d3q

mπ2

1

(Eq2+m2)3
e−i EqEx

= e−|m0|r − e−|m3|r

r
+ m2

0−m2
3

2|m3| e−|m3|r

is the 2-sphere spread of a noncompact representation of 1D position with az-
proportional contribution from the dipole (nildimensionN = 1)

V3(r ) = − d

dr2
V1(r ), V1(z) =

∫ m2
0

m2
3

dm2
(
m2

0−m2
) ∫ dq

π

2

(Eq2+m2)3
e−iqz

=
∫ m2

0

m2
3

dm2
(
m2

0−m2
) ( d

dm2

)2 e−|mz|

|m|

= 2
e−|m0z|

|m0| −
[
2− m2

0−m2
3

m2
3

(1+ |m3z|)
]

e−|m3z|

|m3|

The residual productqq2

R∗ g̃ of the massless vector function for a spacetime
tangent representation with the spacetime vector representation functiong̃, char-
acterized by two invariants gives

q

q2
: R2
∨ → R2 :

q

q2

R∗
∫ m2

0

m2
3

dm2 q

(q2−m2)2

= −
(

1

2
12+ q ⊗ q̌

∂

∂q2

)∫ m2
0

m2
3

dm2
∫ 1

0
dζ

1

q2ζ −m2
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q

q2
: R4
∨ → R4 :

q

q2

R∗
∫ m2

0

m2
3

dm2
(
m2

0−m2
) 2q

(q2−m2)3

= −
(

1

2
14+ q ⊗ q̌

∂

∂q2

)∫ m2
0

m2
3

dm2
(
m2

0−m2
) ∫ 1

0
dζ

1− ζ
q2ζ −m2

The massless tangent function has a hyperbolic singularity surface. With at
least one nontrivial invariant, the spacetime representation function has a
hyperbolic-spherical singularity surface. Therefore, invariants on the hyperbolic
surface are combined with invariants on hyperbolic and spherical surfaces. There
is no combination of invariants that are both on spherical surfaces.

The invariantm2
0 6= 0 for the normalized embedded time representationq

q2−m2
0

is used as unit

m2
0
∼= 1,

q

|m0|
∼= q,

m2
3

m2
0

∼= m2
3

The eigenvalue functions are theq2-dependent residues

l̃1(q2) =
M2( 1

q2 )

q2
=
−

∫ 1
m2

3

dm2

2

∫ 1
0 dζ 1

q2ζ−m2 for R2

− ∫ 1
m2

3

dm2(1−m2)
2

∫ 1
0 dζ 1−ζ

q2ζ−m2 for R4

The residual product will be used to establish duality between spacetime
and tangent representation in the normalization (q

q2

R∗ g̃)(0)= 11+s. This duality
condition requires an eigenvalue at massq2 = 0, i.e., Eq

2

q2
0
= 1, and determines the

ratio m2
3

m2
0

of the invariants for rank 2 spacetime

1= l̃1(0)=
−

logm2
3

2 ⇒ m2
3

m2
0
= e−2 ∼ 1

7.4 for R2

− logm2
3+1−m2

3
4 ⇒ m2

3

m2
0
∼ e−5 ∼ 1

148.4 for R4

12. RESIDUES OF TANGENT REPRESENTATIONS

12.1. Geometric Transformation and Mittag–Leffler Sum

The exponential from the Lie algebraR (time translations) to the group exp
R = D(1) can be reformulated in the language of residual representations with
energy functions by ageometric series

eimt =
∮

dq

2iπ

1

q −m
eiqt

=
∞∑

k=0

(imt)k

k!
=
∮

dq

2iπ

1

q

∞∑
k=0

mk

qk
eiqt
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The transformations involved

z 7→ 1

z
= w 7→ w

1− w
= 1

z− 1
, e.g., z= q

m
,

q2

m2

are elements of the broken rational (conformal) bijective transformations of the
closed complex plane

C 3 z 7→ az+ β
yz+ β ∈ C

with real coefficients as group isomorphic to

A =
(
α β

γ δ

)
∈ SL(R2) ∼ SU(1, 1)∼ SO(1, 2)

For det A = 1upper and lower half planex ± io remain stable. The eigenvalue
w = z= 1 becomes a pole(

α β

γ δ

)
=
(

1 0
−1 1

)
: w 7→ w

−w + 1
, 1 7→ ∞, 0↔ 0

With one fixpointw = 0 the transformation is parabolic, i.e., an element of the

R-isomorphic subgroup (1 0
γ 1).

The geometric transformation will be generalized to associate pole functions
to the complex eigenvalue functions for spacetime withz= q2

m2

z 7→ l (z) 7→ l (z)

1− l (z)

An eigenvalue, i.e., a zero of the denumeratorz0 ∈ {z|l (z) = 1}—assumed to be
simple with l holomorphic there—defines, by geometric transformation of its
Taylor series, aLaurent series(Behnke and Sommer, 1962) and a residue

l (z) = 1+ (z− z0)l ′(z0)+
∞∑

k=2

(z− z0)k

k!
f (k)(z0)

l (z)

1− l (z)
= a− 1(z0)

z− z0
+
∞∑

k=0

(z− z0)kak(z0)

a−1(z0) = − 1

l ′(z0)

Each eigenvalue{zk|l (zk) = 1} has its own principal part with theMittag–Leffer
sumreplacing the simple pole for time or position

z 7→ l (z) 7→ l (z)

1− l (z)
7→
∑

zk

α − 1(zk)

z− zk

The generalization for higher order poles is obvious.
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Therewith one obtains the transition from the eigenvalue functionl̃0 ∗ g̃ to
complex representation functions for the Poincar´e group

l̃0∗
1− l̃0∗

: G̃ → G̃ ′,



g̃ 7→ l̃0 ∗ g̃

l̃0 ∗ g̃(q2) = 1+ (q2−m2) d
dq2 l̃0 ∗ g̃(m2)+ · · ·

g̃(q2) 7→ l̃0∗g̃(q2)
1−l̃0∗g̃(q2)

= a−1(m2)
q2−m2 + · · ·

− 1
a−1(m2) = d

dq2 l̃0 ∗ g̃(m2)

12.2. Residues as Coupling Constants

For the residual spacetime product above (q
q2

R∗ g̃)(q2) the residual normal-
ization a−1(0) for the massless solutioñl1(0)= 1 is given by the inverse of the
negative derivative of the eigenvalue function there

− 1

a−1(0)
= ∂

∂q2
l̃1(0)=


1−m2

3

4m2
3
= e2−1

4 ∼ 1.6 for R2

1−6m2
3+m4

3

12m2
3
∼ e5

12 ∼ 12.4 for R4

With the geometric transformation the principal part in the Laurent series gives
an energy–momentum spacetime translation representation function for mass zero
with residual normalization

q
q2∗

1− q
q2∗ : R2

∨ → SO0(1, 1) E×R2 :
∫ 1

m2
3

dm2 q

(q2−m2)2
7→ 12

a−1(0)

q2
+ · · ·

q
q2∗

1− q
q2∗ : R4

∨ → SO0(1, 3) E×R4 :
∫ 1

m2
3

dm2 (1−m2)2q

(q2−m2)3
7→ 14

a−1(0)

q2
+ · · ·

With appropriate integration contour, it can be used as propagator for a mass
zero spacetime vector field with coupling constant−a−1(0) which—with the
signatures− (d − s) only for 4-dimensional spacetime—has two particle inter-
pretable degrees of freedom with a positive scalar product, related to the 2-sphere
R4
∨/R2

∨ ∼= Ä2 with left and right axialSO(2)-rotations (polarization)

−η jk =



(−1 0
0 1

)
∼=

(
0 1
1 0

)
for SO0(1, 1) E×R2

(−1 0
0 13

)
∼=
0 0 1

0 12 0
1 0 0

 for SO0(1, 3) E×R4

All the numerical results depend on the normalizations—trace normaliza-
tion, dual normalization—which require a deeper understanding. If those normal-
izations can be trusted and if appropriate representations of the compact internal
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degrees of freedom forU(2) hypercharge and isospin are included, the residue of
the arising propagator with mass zero in 4-dimensional spacetime may be com-
pared with the coupling constant (Heisenberg, 1967) in the propagator of a massless
gauge field, e.g., for the electromagnetic interaction and the left and right polarized
photons with Sommerfeld’s fine structure constantα

SO0(1, 3) E×R4 : −η jk e2(0)

q2
with

1

e2(0)
= 1

4πα
∼ 137

12.6
∼ 10.9
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